La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Second Copil Technique SP4

Présentations similaires


Présentation au sujet: "Second Copil Technique SP4"— Transcription de la présentation:

1 Second Copil Technique SP4
SP4 = modes d'accès innovants

2 Agenda Description du SP4 Partenaires impliqués dans le SP4
Rappel des objectifs du SP4 Présentation de l’OBS et WBS actuels Liste des tâches en cours Points administratifs et coordination avec les autres SP Finalisation TDD Status du D4.2.1 Modèles de canaux Progrès technique du SP4 sur les tâches actives Présentations techniques du SP4: SP4.2: Retransmission et turbo égalisation (Charly Pouillat, ETIS) SP4.3: Cooperative relaying for cellular networks (Sebastien Simoens, Motorola) Point dissémination

3 Objectifs et tâches Rechercher
Context: Pôle de compétitivité Urbanisme des RadioCommunications Objectifs: Proposer des améliorations des accès radio sans fil afin de les adapter à une gestion plus dynamique du spectre et d'élaborer des concepts nouveaux Retombées: augmentation du débit total moyenné sur le réseau ou du nombre d'utilisateurs servis et une réduction de l’interférence contribuant à un assainissement global de l’écosystème sans fil Division en 4 tâches: Tâche 4.1: Gestion conjointe des ressources radio Tâche 4.2: Optimisation conjointe des couches accès et physique Tâche 4.3: Couche physique distribuée : réseaux maillés, relais coopératifs et réseaux MIMO virtuels Tâche 4.4: Schémas de transmission multiantennes avancés Tâche 4.5: Retournement temporel Rechercher

4 Organisation Responsables SP4 par org.: FT: Manfaï Wong
Partenaires impliqués: FT, Motorola, Thales, Comsis, Sequans, GET/ENST, ETIS/UCP, Supelec, INRETS Conseillé scientifique: I. Fijalkow, ETIS/UCP Responsable SP4: Marc de Courville, Motorola Responsables SP4 par org.: FT: Manfaï Wong Motorola: Marc de Courville Comsis: Philippe Leclair Sequans: Paul Bazzaz GET/ENST: Philippe Ciblat Thales: Isabelle Icart ETIS/UCP: Inbar Fijalkow Supelec: Jocelyn Fiorina INRETS: Abderrazak Abdaoui

5 Rôles des partenaires: Matrice OBS

6 WBS pour chaque tâche

7 Tâche 4.1: Gestion conjointe des ressources radio
Responsable: Motorola (David Grandblaise) Laison: Motorola (David Grandblaise), Supelec (Jocelyn Fiorina) Livrable D4.1.1: Mécanismes de gestion conjointe de ressource intra et inter systèmes (Rapport/Simulations) Editeur: Motorola (Véronique Buzenac) Tâche: Mono système: gestion d’interference Durée: T0+8->T0+36 Acteurs: Supelec (Pascal Bianchi) et Motorola (Véronique Buzenac), ETIS/UCP (Fijalkow), GET/ENST (Ciblat/Hachem), Thales (Le Martret), INRETS (Berbineau) Sous-Tâche: Allocation de ressources OFDMA (niveau système avec algo de scheduling avancés) (IEEE802.16e/m) Durée: T0+8->T0+20 Acteurs: Supelec Mohamad Assaad, Motorola Véronique Buzenac, ETIS/UCP (Fijalkow), GET/ENST (Ciblat/Hachem), Thales (Le Martret) Sous-Tâche: Déploiement single frequency reuse (IEEE802.16e/m) Durée: T0+12->T0+36 Acteurs: Motorola: Véronique Buzenac, INRETS (Berbineau) Jalon: Transfert vers SP3 des résultats de simus T0+24 Tâche: Intra-systèmes: mechanismes dynamiques de partage de canaux inter-operateurs, coexistence et partage de spectre Durée: T0->T0+20 Acteurs: Motorola (David Grandblaise) Sous-Tâche: Métaheuristique distribuée Sous-sous-Tâche: IEEE802.16h Durée: T0->T0+12 Acteurs:Motorola David Grandblaise Sous-sous-Tâche: IEEE802.22 Durée: T0+12->T0+20 Acteurs: Motorola David Grandblaise Jalon: Tranfert vers SP3 des métaheuristiques T0+12

8 Tâche 4.2: Optimisation conjointe des couches accès et physique
Responsable: ETIS/UCP (Charly Poulliat) Laison: Thales (Isabelle Icart), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow, Assimi) Livrable D4.2.1: Modulation/Codage adaptatif et HARQ (Rapport intermédiaire/Simulations) Editeur: Thales (Isabelle Icart) Tâche: étude codages adaptatifs HARQ/AMC état de l’art Durée: T0->T0+6 Acteurs:Thales (Isabelle Icart), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow, Assimi, HARQ type II, égaliseur conjoint SIMO) Tâche: stratégies de choix adaptatif de mode de transmission (metrique, IR, SISO&MIMO, lien codage, latence QoS & persistance) Durée: T0+6->T0+18 Acteurs:Thales (Isabelle Icart), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow) Jalon: Transfert vers SP3 des résultats de simus T0+24 Livrable D4.2.2: Modulation/Codage adaptatif et HARQ (Rapport final/Simulations) (Combinaison HARQ/AMC) Editeur: ETIS/UCP (Inbar Fijalkow) Tâche: influence d’une connaissance imparfaite ou partielle du canal de transmission avec décodage itératif (mono, multiuser) Durée: T0+18->T0+36 Acteurs: ETIS/UCP (Inbar Fijalkow) Jalon: modèles de canaux en provenance de SP2/3 T0+12

9 Tâche 4.3: Couche physique distribuée: réseaux maillés, relais coopératifs et réseaux MIMO virtuels
Responsable: Supélec (Jocelyn Fiorina) Liaison: Thales (Isabelle Icart), Motorola (Sébastien Simoens), Supelec (Jocelyn Fiorina), GET/ENST (Philippe Ciblat), INRETS (Abdaoui) Livrable D4.3.1: Réseaux coopératifs, antennes virtuelles et relais Editeur: Thales (Isabelle Icart) Tâche: relais coopératif Durée: T0->T0+12 Acteurs: Thales (Isabelle Icart), Motorola (Sébastien Simoens), GET/ENST (Philippe Ciblat),Supélec Tâche: modulation et codage distribué VMIMO, collaborative BST Durée: T0+6->T0+18 Acteurs: Thales (Isabelle Icart), Motorola (Laurent Mazet), Supelec (Jocelyn Fiorina, Antoine Berthet), GET/ENST (Philippe Ciblat) Livrable D4.3.2: Réseaux coopératifs et réseaux ad-hoc/maillés Editeur: Supelec (Jocelyn Fiorina) Tâche: Adhoc and pervasive networks. IEEE et alternatives Durée: T0+6->T0+36 Acteurs: Thales, Supelec (Jocelyn Fiorina), INRETS (Marion Berbineau) Jalon: T0+12, importation du SP3 des contraintes de méthodologie de simulation à appliquer aux réseaux maillés et relais coopératifs. Jalon: T0+24, transfert au SP3 des résultats de performance des nouvelles méthodes mise en œuvre sur réseaux maillés et relais coopératifs. Jalon: T0+36, livrable. Tâche: algorithmes d’inférence distribuée appliqués au traitement de l’information dans les réseaux sans fil centralisés et décentralisés Durée: T0+9->T0+36 Acteurs: Supelec (Antoine Berthet, Mithridad Pourmir)

10 Tâche 4.4: Schémas de transmission multiantennes avancés
Responsable: GET/ENST (Philippe Ciblat) Liaison: GET/ENST (Philippe Ciblat/Jean-Claude Belfiore), Motorola (Stéphanie Rouquette/Véronique Buzenac), Supelec (Jocelyn Fiorina), Sequans (Paul Bazzaz), INRETS (Abdaoui), Comsis (Leclair) Livrable D4.4.1: Nouvelles modulations MIMO avancées pour IEEE802.11n et IEEE802.16e/m : techniques multi-utilsateurs et formation de voies (Rapport/Simulations) Editeur: ENST (Philippe Ciblat) Tâche: Schémas MU-MIMO classique: SDMA (MU-MIMO UL&DL), STC distribués (MU-MIMO UL) Durée: T0->T0+12 Acteurs: Motorola (Stéphanie Rouquette), Supelec (Jocelyn Fiorina, Mohamad Assaad), Sequans (Paul Bazzaz), INRETS (Abdaoui) Tâche: Schémas MU-MIMO downlink avancés: DPC, Opportunistic beamforming, précodage linéaire Durée: T0+6->T0+18 Acteurs: GET/ENST (Philippe Ciblat/Jean-Claude Belfiore), Motorola (Véronique Buzenac), Supelec (Jocelyn Fiorina, Mohamad Assaad), Sequans (Paul Bazzaz), INRETS (Marion Berbineau) Livrable D4.4.2: Nouvelles modulations MIMO avancées pour IEEE802.11n et IEEE802.16e/m : code spatio-temporels parfaits (Rapport/Simulations) (pb du canal de Rice) Editeur: GET/ENST (Jean-Claude Belfiore) Tâche: codes spatio-temporels parfaits, construction de codes pour connaissance partielle des canaux au TX Acteurs: GET/ENST (Jean-Claude Belfiore), Motorola (Stéphanie Rouquette), Comsis (Leclair), Supelec (Jocelyn Fiorina), Sequans (Paul Bazzaz), INRETS (Abdaoui) Tâche: precodage, étalement et codes hybrides STC, TxBF Durée: T0+12->T0+36 Acteurs: GET/ENST (Philippe Ciblat/Jean-Claude Belfiore), Motorola (Patrick Labbe) Jalon: T0+6, importation des méthodologies de simulation du SP3 en terme de modèles de canaux, de couplage d’antennes et d’environnement pour procéder à des simulations réalistes Jalon: T0+24, transfert au SP3 des nouvelles méthodes MIMO développées dans le SP4

11 Tâche 4.5: Analyse du retournement temporel
Responsable: France Telecom (Manfaï Wong) Liaison: France Telecom (Manfaï Wong) Livrable D4.5.1: Rapport sur les fondements et la mise en œuvre expérimentale (Rapport/Simulations) Editeur: France Telecom (Manfaï Wong) Tâche: Fondements du retournement temporel, questions théoriques des ondes électromagnétiques Durée: T0->T0+18 Acteurs: France Telecom (Manfaï Wong), Supelec (Jocelyn Fiorina) Livrable D4.5.2: Analyse des spécificités liées aux ondes électromagnétiques (Rapport/Simulations) Tâche: Mise en œuvre expérimentale du retournement temporel dans les ondes radioélectriques. Analyse des techniques de retournement temporel Durée: T0+18->T0+30 Acteurs: France Telecom (Manfaï Wong) Tâche: Comparaison avec les techniques usuelles d'égalisation Durée: T0+24->T0+36

12 Récapitulatif fournitures

13 WBS

14 Planification 1/2

15 Planification 2/2

16 Remontés au COPIL global
Modèles de canaux variant dans le temps pour <T0+12, provenance: SP2/3; à défaut réutilisation résultats existants (Normes/projets Européens) mais nécessité de validation SP2/3 Clarification politique de publication Publications au GRETSI du SP4 sans procédure de review et aval de URC Retour d’expertise sur les stratégies réseau/crosslayer

17 Sous-tâches actives du SP4
SP4.1 Gestion conjointe des ressources radio (Motorola David Grandblaise) Livrable D4.1.1: Mécanismes de gestion conjointe de ressource intra et inter systèmes (Rapport/Simulations) Tâche: Intra-systèmes: coexistence et partage de spectre Sous-Tâche: Métaheuristique distribuée IEEE802.16h Durée: T0->T0+12 Acteurs: Motorola (David Grandblaise) SP4.2 Optimisation conjointe des couches accès et physique (ETIS/UCP: Charly Poulliat) Livrable D4.2.1: Modulation/Codage adaptatif et HARQ (Rapport intermédiaire/Simulations) (Thales Christophe Le Martret) Tâche: étude codages adaptatifs HARQ/AMC état de l’art Durée: T0->T0+6 Acteurs:Thales (Christophe Le Martret), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow, Assimi, HARQ type II, égaliseur conjoint SIMO) SP4.3 Couche physique distribuée: réseaux maillés, relais coopératifs et réseaux MIMO virtuels (Supelec Jocelyn Fiorina) Livrable D4.3.1: Réseaux coopératifs, antennes virtuelles et relais (Thales: Marc Chenu) Tâche: relais coopératif: accroissement de la capacité et résolution des problèmes de masquage, aspects pratiques Durée: T0->T0+12 Acteurs: Thales (Marc Chenu), Motorola (Sébastien Simoens), GET/ENST (Jean-Claude Belfiore), Supelec (Fiorina), INRETS (Abdaoui) SP4.4 Schémas de transmission multiantennes avancés (GET/ENST Philippe Ciblat) Livrable D4.4.1: Nouvelles modulations MIMO avancées pour IEEE802.11n et IEEE802.16e/m : techniques multi-utilsateurs et formation de voies (Rapport/Simulations) (ETIS/UCP Inbar Fijalkow) Tâche: Schémas MU-MIMO classique: SDMA (MU-MIMO UL&DL), STC distribués (MU-MIMO UL) Durée: T0->T0+12 Acteurs: Motorola (Stéphanie Rouquette), Supelec (Jocelyn Fiorina, Mohamad Assaad), Sequans (Paul Bazzaz), INRETS (Abdaoui) SP4.5 Analyse du retournement temporel (France Telecom Manfaï Wong) Livrable D4.5.1: Rapport sur les fondements et la mise en œuvre expérimentale (Rapport/Simulations) Tâche: Fondements du retournement temporel, questions théoriques des ondes électromagnétiques Acteurs: France Telecom (Manfaï Wong), Supelec (Jocelyn Fiorina) Durée: T0->T0+18

18 SP4 progress update per task

19 TDD status Task description document:
To evolve along the life of the project describing initially the active tasks TDD4.1: completed Aggregator: Motorola TDD4.2: completed Aggregator: ETIS TDD4.3: completed Aggregator: SUPELEC TDD4.4: completed Aggregator: ENST/Motorola TTD4.5: completed and posted Aggregator: FT

20 SP4.1: Gestion conjointe des ressources radio
Dynamic Inter-BSs Channels Sharing Progress on the design of an extended DCA scheme enabling inter BS channels (multi-RAT) reuse on a shared pool of carrier frequency for heterogeneous reuse distance constraints (SNR based, etc.) State of the art: for the moment the allocation is dynamic for mono-system or fixed for betweens heterogeneous RATs

21 SP4.2: Optimisation conjointe des couches accès et physique
Ongoing activities: Repetition and turbo-equalization Iterative detector structure for HARQ, ML FER perf. HARQ/Chase Combining detector. Theoretical admissible rates for perfect codes. Diversity benefit for bloc transmission. Adaptive modulation and coding for IEEE802.11n and LQM/CQI accurate metric End to end HARQ performance including cross layer (IP) modelling Deliverable status Topic: state of the art on AMC and HARQ Intermediate report T0->T0+6 Editor: Thales, Participants: Thales, Motorola, Sequans, ETIS/UCP Status: 80% completed, expected delivery: 2007/06/15 Channel models (Jalon T0+12) SP2/3 requested SP4 to provide channel models Result: one non scheduled report completed and ready for publication containing industry standard channel models covering wide area and local area deployments with status on air interface (OFDM/OFDMA) and system level parameters (path loss, TX power etc.) Suggested process: transfer to SP2/3 for request for comment and possible validation. If any modification is to be perform, request from SP4 that is is made in the same format than the SCME/TGn channel models specification.

22 SP4.2: D4.2.1 contributions summary
ETIS : Contribution à l'état de l'art des techniques d'ARQ hybrides : Techniques d'HARQ à redondance incrémentale utilisant les turbo-codes à rendements compatibles (RCTC). Techniques d'HARQ à redondance incrémentale utilisant des codes LDPC poinçonnés ou des codes Fontaines/Raptors. Techniques d'HARQ avec égalisation intégré. MOTOROLA : State of the art on AMC and application to IEEE802.11n Combined AMC/HARQ and applicability to IEEE802.11a (suitability taking into account MAC overhead) CQI/LQM and MIMO error prediction techniques (EESM, MIESM based) THALES : Proposition de squelette/répartition des contributions entre les différents partenaires. Techniques d'HARQ à redondance incrémentale utilisant les codes convolutifs à rendements compatibles (RCPC). Techniques MIMO/HARQ. Optimisation cross-layer IP/accès radio basée sur les HARQ. SEQUANS : Contribution état de l'art pour standard e.

23 SP4.3: Couche physique distribuée: réseaux maillés, relais coopératifs et réseaux MIMO virtuels
Cooperative relaying MIMO Single Relay System for Uplink communications (Bus-Base station): in Urbain and Suburbain environments such as Paris and Ille-de-France for public transportation (Bus) (INRETS) Benefit of fixed cooperative relaying technologies for cellular networks, towards illustration for IEEE802.16m (Motorola): benchmarking D&F, C&F for UL and DL with MIMO configurations of RS and BS Power allocation strategies for the relays for minimizing the error probability in the D&F context and extension to A&F (ENST) Cooperative BS Start of investigation of distributed antenna arrays: benefit of central processing for UL decoding and user/BS selection strategies (Motorola) Ad-hoc and distributed networks: Power Control in Ad-hoc networks (SUPELEC) Proposal of a distributed inference algorithm. Development of this algorithm is based on an extension of an recent method proposed for performing point to point equalization (SUPELEC)

24 Tâche 4.3: Couche physique distribuée: réseaux maillés, relais coopératifs et réseaux MIMO virtuels
L’étude du Relay Channel a mené à divers approfondissement en cours: Étude du MIMO Compress and Forward (Simoens) Application de relais fixes dans le cadre d’un déploiement cellulaire. (Simoens) Etude sur l’attribution des puissances aux différents relais pour diminuer la probabilité d’erreur dans un contexte Decode and Forward, extension au contexte Amplify and Forward. (Ciblat) Un scenario de communication Bus/ Base Station impliquant un relais est à l’étude. Les algorithmes doivent être évalués en fonction de la position du relais et des conditions proposées liées à l’environnement urbain (Paris/ Ile de France). (Abdaoui) L’étude des réseaux ad-hoc et distribués: Power Control in Ad-hoc networks. (Fiorina) Proposition d’un algorithme d’inférence distribuée. Le développement de cet algorithme se fait à partir de l’extension d’un algorithme récemment proposé en point à point pour l’égalisation. (Berthet/Mithridad)

25 SP4.4: Schémas de transmission multiantennes avancés
Multi-user MIMO for uplink and downlink: Investigation on dirty paper coding energy confinement function and comparison with block diagonalization (Tx SDMA) Adavanced receiver for UL MU-MIMO: use Bit-Interleaved coded modulation scheme at the transmitter and interference canceller MMSE receiver (IC-MMSE) based on Generalized Minimal Residual (GMRES) Advanced MIMO schemes for IEEE802.16m and IEEE802.11n/vht Golden codes evaluation and design (COMSIS&Motorola), implementation on real hardware (COMSIS) Optimal precoding for Ricean channel Heuristic proposition for several precoding matrices mitigating outage probability in MIMO scheme MISO scheme (typically mobile phone) : caracterisation et sketch of proof for optimal precoding

26 SP4.5: Analyse du retournement temporel
Goal: Analysis of the potential of time reversal for communications Avoid channel estimation, record at RX the received wave and retransmit its time reversed conjugate basedband equivalent to perform perfect adaptive filter: application to UWB PAM transceiver design. Study the basic principles of Time Reversal (TR) with experimentation Modelling Output : experimental and virtual platform for testing TR Progress and results: Definition and implementation of the basic TR experiment in reverberation chamber Simulation with 2D FDTD

27 SP4 technical summary and highlights

28 SP4.1.1 Study 1: DCA extension for Inter-BSs channels sharing
Objective: Assess and analyze channels sharing trunking gain when channels can be shared in a distributed fashion (cell by cell basis) between BSs with heterogeneous frequency reuse distances constraints in a simple scenario. Approach: Pooling system in which classical dynamic channel allocation (DCA) scheme is generalized. Problem formulation will be provided in SP4.1 and simulation/results will be provided in SP3. Expectations: This preliminary analysis will provide some guidance in which circumstances inter-BSs channel sharing should be triggered or not to ensure some trunking gain.

29 SP4.1.1 Study 2: Inter-BSs channels offering/renting strategies
Objective: Design some real time inter-BSs channel sharing negotiation strategies in support of channel offering/renting between BSs. Approach: Offering/renting meta-heuristics (auctioning based or not) will be proposed in SP4.1. Simulation/results will be provided in SP3. Expectations: Results of this study are expected to be disseminated in h/ standardization bodies as solutions for h/ systems self-coexistence (cognitive radio based).

30 SP4.1 Dynamic Inter-BSs Channels Sharing (multiple RAT)
Idea: extension of single system based distributed and dynamic real time frequency assignment to a multi-systems radio environment (extension of DCA to M systems) Principle: Frequency carriers of the M systems are pooled. Frequencies of the pool can be accessed by any of the system provided that the co-channel intra and inter systems reuse distance constraints are not violated (cell by cell based) => Call admission control (CAC) focused. A set of eligible frequencies is assessed for each new call (call by call based). In case no eligible channels exists, the user is blocked. A channel is selected randomly among the eligible channels (the user is served). Output: Performance bound derivation of the eDCA trunking gain (regardless of negotiation output: ideal case) at an abstraction level Modeling: Approached as a queuing system for M different radio systems in a linear multi-cells topology with heterogeneous reuse distance constraints and channel quantum.

31 SP4.2.1 Efficient CQI for AMC in IEEE802.11n
Current systems provide a lot of MCS (1930 for 11n) Spectrum efficiency is conditioned to the reliable choice of the MCS depending on the transmission medium quality Accurate CQI indicators is a must in next generation systems Traditional approaches rely on a SNR based criterion for performing AMC Issue: large standard deviation of the PER distribution at a given SNR as a function of channel realizations Progress: mutual information/exp-ESM based metrics 7dB shift with respect to ergodic capacity limit with linear receiver and punctured convolutional codes Illustration: from 1x1 IEEE802.11a link to IEEE802.11n 2x2

32 SP4.2.1: HARQ, context of the study
HARQ is an extension of standard ARQ which greatly improves wireless channels reliability (throughput, efficiency) Incremental Redundancy (type III HARQ) is a throughput-efficient technique (progressively adapts FEC redundancy level according to channel state conditions) MSDU-HARQ is proven to be more efficient than MPDU-HARQ M = 6 M = 3 Simulation results over Gaussian channel

33 SP4.2.1: WIP, expected results
Build an Omnet simulation including : Radio Access layer model (MAC+PHY) Incremental redundancy HARQ techniques Gaussian / Rayleigh fading radio channel models Ad-hoc network configuration : Traffic generated by means of Poisson statistics Dynamic priority-based allocation scheme Cooperative relaying Performance (throughput, efficiency) measurements at MAC level IP-level performance estimations

34 SP4.2.1 H-ARQ with integrated turbo-equalization
Channel Model : We adopt Nakagami-m block fading channel model. It includes large class of fading channels (Rayleigh, Rician). Channel coefficients h=(h0,…hL) are i.i.d. Gaussian random variables. hi are constant over the duration of each packet and independent from one packet to another. Turbo-equalization : Iterative signal detection and error correction. Channel diversity : Codeword is divided to B blocks of equal length. Each block is sent over an independent fading channel.

35 SP4.2.1: Turbo-Equalization
Low complexity : Simple filter-based MMSE-turbo equalizer with linear complexity as function of channel length and modulation alphabet size (*). Performances are closed to those of the MAP equalizer Fast convergence : Only 3 iterations are needed to achieve flat-fading channel performance. Turbo-equalization gain : Important SNR gain in frame error rate allowing equivalent gain in throughput performance in H-ARQ system. (*) submitted to GRETSI-07

36 SP4.2.1 H-ARQ with joint equalization
Channel diversity : Average SNR per received packet variation is reduced with increasing number of blocks per coded packet. SNR distribution : (m = B x L) Block combining: Multiple received replicas of each block are jointly equalized. H-ARQ mode between Chase Combining (CC) and Incremental Redundancy (IC) is possible.

37 SP4.3.1: Motivations for cooperative relaying
Relaying is a reality Products are there (e.g. MotoMesh® city-wide networks) Standards are on the way (802.11s, j) Motivation for Relaying Combat the throughput drop vs. distance Limit the deployment cost (wireless backhaul) Increase the total system capacity What is cooperative relaying? Constructive transmissions from source and relay(s) are recombined at destination (2 hop case) Why cooperative relaying? Improves coverage/capacity by virtual MIMO techniques Can benefit from both infrastructure and user density Cooperative Relaying Single-Path Relaying Direct Interference or contribution?

38 SP4.3.1: preliminary benchmarking
No relay Non cooperative D&F No relay Coop D&F More than 80 Mb/s is offered in a significant area around relays Poor coverage persists in regions far from both BS and RS The BS transmits in phase 1, the RS transmits in phase 2, the MT combines signals from both phases (e.g. MRC, Incremental Redundancy, Distributed STC, etc…) Poor coverage persists in regions far from both BS and RS Metric: DL single user maximum (TDMA sched) average (fading) mutual information BS: 3 sectors 4AE, MT Omni 2TX lower power Propagation: LOS BSRS, NLOS BSMT & RSMT RS&BS share the TDD/TDMA Urban micro cell deployment, 20MHz BW BS RS MT

39 SP4.3.1 Cooperative D&F in the downlink Cooperative C&F in the uplink
BS RS Around the BS, can use Direct Link Around the RS, cooperation yields only small increase (~+20%) Highest improvement in poor coverage areas (~+50%) BS RS Close to the relay use D&F C&F may increase uplink throughput in poor coverage areas Figure: Relative increase of the peak throughput by cooperative D&F relaying vs. best of non-cooperative techniques Figure: Ratio Cooperative C&F UL throughput vs. Cooperative D&F

40 SP4.4.3 Linear precoding Observation: Rice channels are present between BS<->RS and also in LOS situations (indoor/outdoor) Linear precoding: proposition of new precoding matrix based on optimization of outage probability specifically for Rice channels Literature : precoding matrix based on ergodic capacity MMSE approach to select a relevant matrix (modification of the well-known waterfilling matrix) Approximation at low SNR of outage probability Simulation result : Rice channel (Ricean factor = 7dB)

41 SP4.4.1 Cooperative BS Background
Frequency reuse 1 networks allow allocation of all the pool of available frequencies to the entire network Consequence: interference level increases reducing link capacity on cell borders Solution for uplink transmission: cooperative decoding of one user by multiple base-stations (Virtual Antennae Array) Resulting problem addressed by invention: selection of base-stations participating in decoding (sub-network) to reduce the amount of data to be transmitted on the backhaul

42 SP4.4.1 Cooperative BS Selection procedure
Cooperative MMSE decoding link capacity Possible selection procedure: select base-stations by performing SNR ordering (simple but far from optimality) Optimal solution: compute capacity for all possible combinations (complexity affordability issue) Our proposal: a selection algorithm in the spirit of the sphere decoding algorithm i.e. Elect a first set of base-stations based on the SNR criterion. For each selected base-station S: Evaluate the resulting throughput (based on any criterion e.g. the capacity) by substituting this base-station S by a candidate one C belonging to the unselected set If the capacity is improved, the candidate base-station C is elected and replace the previously selected base-station S. S is then reassigned to the pool of unselected base-stations This process (step 2) can be iterated to refine the selection and reach a better selection

43 SP4.4.1 Cooperative BS Performance improvement
Figure illustrates capacity gain function of the BS number (from 1 to 19) on min and max capacity point for FR1N compared to classic cellular network Gain depends on selection algorithm: e.g. for 7 BS on minimal capacity point we have: 3x with an SNR selection 5x with our sphere like algorithm 6x with exhaustive search Sphere like algorithm provides scalable complexity It preserves important gain with a substantial reduction of the backhaul load

44 SP4.4.2: Full rate full diversity codes
Current products exploit now Alamouti STBC: Grants full rate and diversity for 2x1 configurations only! What’s next? Full rate and full diversity has been demonstrated for 2x2 configurations (Golden codes) and STBC with this property exist for all configurations. Enabler: products now integrate near ML detector Definition: Perfect STBC are codes constructed from a cyclic division algebra that have the unitarity property. Optimization tool: based on number theory Properties Nt symbols per channel use; linearity Non vanishing determinant when the spectral efficiency increases Perfect STBC achieve the diversity-multiplexing gain trade-off with minimal codelength  good candidates for high data rates Expected gain: 3dB on top of sphere decoding gain on traditional SDM (~5dB over MMSE) or sub-optimal forms. Output: one STBC new code for 11n if possible or NG standard. Products: high end handsets / video broadcasting in the home,

45 SP4.4.2: Proprietary STBC schemes for IEEE802.11n
Golden Code: 2x2 STBC Full Rate Full Diversity (FR/FD) Coding Gain Enhancement by optimized TCM(Patented in 2005) Patented Golden Code decoder in 2006 Claims: Near Maximum Likelihood Performances (≤ 1dB) Low complexity Outperforms VBLAST 4x4 Progress: Low complexity decoder architecture for hardware implementation Plans: 2x n development board in June 07 802.11n SoC (2H07)

46 SP4.4.2: GC simulation results
Source: Comsis

47 SP4.4.2 Advanced MIMO receiver
SP : GMRES Subspace method based IC-MMSE MIMO Receiver (INRETS) Objective : Reduce the Interferences, in MIMO channel, produced : by cell transmit antennas. or by inter-chip interference in case of frequency selective channel. Approach : Use Bit-Interleaved coded modulation scheme at the transmitter and interference canceller MMSE receiver (IC-MMSE) based on Generalized Minimal Residual (GMRES) to resolve the following IC-MMSE equation : Concerns the spatial multiplexing using turbo encoder and Interference Cancellation. Performs the link and the throughput between the Bus and the Base station (usually In UPLINK).

48 SP4.4.2 Advanced MIMO receiver
Receiver Structure The IC-MMSE filters are computed as follows :

49 SP4.5.1: plans Goal: Analysis of the potential of time reversal for
Study the basic principles of Time Reversal (TR) Set up the basic TR experiment in a reverberation chamber Simulate TR experiment with electromagnetic modeling tools (FDTD, other, …) Discuss theoretical questions Output : experimental and virtual platform for testing TR Progress report in July 07

50 SP4.5.5: progress and results
Definition and implementation of the basic TR experiment in reverberation chamber amplifier 50dB Arbitrary wave generator AWG 710B, 4.2Gs/s antenna Reverberation chamber antenna Digital oscilloscope TDS 6124C 12GHz, 40Gs/s

51 SP4.5.1 : progress and results
Simulation with 2D FDTD

52

53 Règles de fonctionnement
Format des livrables Version définitive rendue 2 semaines avant date contractuelle Langue: anglaise Nomenclature: URC/SPx/Dx.y.z x : de 0 à 4 représentant le sous projet générateur du document. y : numéro de Tâche dans le sous projet générateur du document. A zéro dans le cas d’un compte rendu. z : numéro de fourniture dans la Tâche ou numéro d’ordre dans le cas d’un compte rendu. Hiérarchie Sous-Projet/Tâche/Activité/Contribution Format compatible: Microsoft Word, Excel, Power Point, MSP, Visio Fréquence des réunions d’avancement: Physique: tous les 3 mois, conférence téléphonique mensuelle

54 Liste de diffusion Validation de la liste de contributeurs technique
ETIS: ENST: SUPELEC: FT: THALES: SEQUANS: COMSIS: INRETS: MOTOROLA:

55


Télécharger ppt "Second Copil Technique SP4"

Présentations similaires


Annonces Google