UE FMOV309 Génétique quantitative évolutive – 12 Nov 2013 Le modèle animal Génétique quantitative en populations naturelles.

Slides:



Advertisements
Présentations similaires
Primary French Presentation 2 Saying How You Are.
Advertisements

How to solve biological problems with math Mars 2012.
Échantillonnage de l'eau et des facteurs connexes pour mesurer les caractéristiques physiques, chimiques et microbiologiques de l'eau de surface et des.
Finger Rhyme 6 Summer Term Module 6 Culturethèque-ifru2013 May not be copied for commercial purposes.
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
Unité 2 La grammaire d’Unité 2. L’accord o One must make agreement from the noun(s) to the verb: - Il coûte… - Elle coûte… - Ils coûtent… - Elles coûtent…
L’inversion --another way to make a question.. What are some ways to form a question? Est-ce que... N’est-ce pas? Voice inflection.
© Copyright Showeet.com S OCIAL M EDIA T HINKING.
Laboratoire des outils informatiques pour la conception et la production en mécanique (LICP) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 1 Petri nets for.
Le passé composé The perfect tense Eg: J’ai mangé une pizza I have eaten/ate a pizza.
Modèles et observations Confidence in the validity of a finding is based on the type, amount, quality, and consistency of evidence (e.g., data, mechanistic.
Le Comparatif et le Superlatif
Essential Questions  How to the French express possession?  How does it compare with English?
THE ADJECTIVES: BEAU, NOUVEAU AND VIEUX 1.
Le superlatif Comparing people and things within a group.
French 101 Important Verbs. The most important French verbs – avoir (to have), être (to be), and faire (to do/make) They are used in some of the ways.
FREE HEALTH CARE AND RISK OF MORTALITY ON UNDER 5 YEARS OLD CHILDREEN IN BURKINA FASO : EVIDENCE FROM SAPONE HDSS By Malik LANKOANDE Msc Demography Projet.
2 Le verbe « être » au pluriel Les normes: Communication 1.2 Comparisons 4.1 Les questions essentielles: - What are the plural subject pronouns in French?
Les Questions d’Information (Information questions)
Year 10. Bon appetit unit. Introducing ‘en’. ‘en’ – ‘some of it’ or ‘some of them’ ‘En’ is a small but important word in French that is commonly used.
Les pronoms objets Mme Zakus. Les pronoms objets When dealing with sentences, subjects are part of the action of the verb. In other words, they “ do ”
La mémoire(1): Comment bien travailler
Notes le octobre ÊTRE (to be) je suis (I am)nous sommes (we are) tu es(you are)vous êtes (you (plural) are) il/elle est (he/she is)ils/elles sont.
Your team’s name. Préselection file You have just downloaded the preselection file: it’s the first step for you to win the challenge! In this file, you.
Irregular Adjectives Not all adjectives are made the same.
Les verbes réfléchis.
GREDOR - GREDOR - Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables How to plan grid investments smartly? Moulin de Beez, Namur.
Modèles d’interaction et scénarios
Warm up Write about each chore you do and say how often you have to do them, using French expression such deux fois par semaine, chaque Lundi, souvent,
Tache 1 Construction d’un simulateur. Objectifs Disposer d’un simulateur d’une population présentant un déséquilibre de liaison historique, afin d’évaluer.
Université d’Ottawa - Bio Biostatistiques appliquées © Antoine Morin et Scott Findlay :05 Asymétrie fluctuante.
Welcome everyone.
FINANCE Distribution des rentabilités Professeurr André Farber Solvay Business School Université Libre de Bruxelles.
Celebrity Photo Album by M. Rocque. La Description You are going to see several celebrities. For each celebrity say one or two adjectives to describe.
Object pronouns How to say “him”, “her”, “it”, “them”
Université d’Ottawa - Bio Biostatistiques appliquées © Antoine Morin et Scott Findlay :46 1 Régression logistique.
1. Est-ce que Est-ce que, literally translated "is it that," can be placed at the beginning of any affirmative sentence to turn it into a question: Je.
University of Ottawa - Bio 4118 – Applied Biostatistics © Antoine Morin and Scott Findlay 24/07/2015 2:29 PM Bootstrap et permutations.
Salut, les copains! French 1, Chapter 1-1.
Le Participe Présent Using the Present Participle in French!
WILF: TO BE ABLE TO GIVE AN OPINION FOR LEVEL 3
What’s the weather like?. Look at the verb phrase fait-il above Turn it around and you have il fait The phrase Il fait can be used to describe lots of.
U NITE 7A: E CHAUFFEMENT 1 L E PREMIER OCTOBRE Le mot juste Fill in each blank with an appropriate vocabulary word. 1. M. Tremaine doit ( must ) avoir.
The comparative and superlative b In this lesson you will learn how to use the comparative and superlative in a sentence. b 1. We will discuss the translation.
Comparaison Culturel Tips and tricks. 1 st things 1 st Know the general instructions before the test! You will have 4 minutes to read the topic and prepare.
LES ARTICLES le français 1. Discussion Read the statements below and then discuss the questions. J’ai une amie française. Elle s’appelle Anne. J’ai un.
Clique Percolation Method (CPM)
It’s.  Both C’est and Il est/Elle est can mean it’s.  There are specific times to use each.
Negative sentences Questions
Quality assured by the ALL Connect project (2015) Model writing about food Au petit déjeuner, en général je mange des céréales et du pain grillé et je.
Les Adjectifs. What is an adjective? An adjective is a word that modifies a noun by describing it in some way: Shape Color Size Nationality.
Calcul de puissance en IRMf Réunion 2 CNF 2015/2016.
O WHY IS IT IMPORTANT TO PLAN AHEAD FOR THE FUTURE?
Welcome to the world of adjectives! To be an expert in French, you need to master the art of adjectives. These are words which are used to describe nouns.
Week 7 Abakar Adam Sakina Ismael. By Elhanan Helpman, Marc J. Melitz, and Stephen R. Yeaple.
Measures of Comparative Advantage. 2 Outline 1.Defining measures 2.Some tests and examples.
Le Verbe Avoir L’Objectif: to learn the verb avoir in the present tense and to be able to use it in context By: B. Antoniazzi DDE French 1 U1 L2C AVOIR.
1 Linear Prediction. 2 Linear Prediction (Introduction) : The object of linear prediction is to estimate the output sequence from a linear combination.
Reflective verbs or Pronominal verbs
Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics.
Exercices: Système d’Information
© 2004 Prentice-Hall, Inc.Chap 4-1 Basic Business Statistics (9 th Edition) Chapter 4 Basic Probability.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 1-1 Chapter 1 Introduction and Data Collection Basic Business Statistics 10 th Edition.
High-Availability Linux Services And Newtork Administration Bourbita Mahdi 2016.
What’s the weather like?
POWERPOINT PRESENTATION FOR INTRODUCTION TO THE USE OF SPSS SOFTWARE FOR STATISTICAL ANALISYS BY AMINOU Faozyath UIL/PG2018/1866 JANUARY 2019.
Transcription de la présentation:

UE FMOV309 Génétique quantitative évolutive – 12 Nov 2013 Le modèle animal Génétique quantitative en populations naturelles

Partie 1. Modèle univarié But: décomposer la variance phénotypique et estimer l’héritabilité d’un caractère

n = 960 breeders Pedigree of breeding swans

The ‘animal model’ y i = μ + b i + a i + e i random residual error additive genetic effects population mean phenotype of individual i Pro:Exploits all pedigree information (more powerful) Accommodates unbalanced datasets Can include repeated measures on the same individual Non-genetic resemblance can be controlled for and estimated Con: Computational complexity Requires long-term datasets It combines pedigree information + measures on phenotypes for the partition of individual phenotypes: Simplest form of animal model: Kruuk Phil.Trans.R.Soc.Lond.B fixed effects (e.g. sex, age)

y i = μ + b i + a i + e i breeding value of individual i a i is ADDITIVE GENETIC MERIT or BREEDING VALUE of individual i Breeding value of i Is the sum of the additive effects of its genes on trait y Is twice the expected deviation of its offspring phenotype from the population mean (under random breeding). Cannot be measured, but can be estimated or predicted

Phenotypic data Pedigree information Animal Model 1. (Co)variance components including V A 2. Estimated (predicted) breeding values, a i Test biological hypotheses ! ! INPUT DATA OUTPUT TOOL: Statistical model used by animal breeders (and evolutionary biologists) OBJECTIVE

The univariate ‘animal model’ The animal model is a form of mixed model solved by REML or a Bayesian approach X is a design matrix of 0s and 1s relating each observation to corresponding fixed effects (such as population mean) given in the vector β Each Z i is a design matrix for a corresponding vector of random terms u i Matrix form : y = X β + Σ i Z i u i + e vector of measures of the trait y on all individuals vector of fixed effects vectors of random effects vector of residual errors

It’s just another mixed model… y = X β sex + Z a + e y = X β + Σ i Z i u i + e y = = μβMμβM a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 10 1 Fixed effect: sex 1 Random effect: additive genetic

y = = μβMμβM a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 10 BLUPs: predictors of random effects BLUEs: estimates of fixed effects Step 2 σ2Aσ2A Step 1 σ2Eσ2E

Using the pedigree to estimate var(a i ) = V A a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 - For any pair of individuals i and j, Additive genetic covariance for a trait = 2 Θ ij V A Θ ij : the coefficient of coancestry the probability that an allele drawn randomly from individual i will be identical by descent to an allele drawn randomly from individual j. => e.g. Θ ij = 0.25 for parent and offspring, so additive genetic covariance between parent and offspring is ½ V A => the pedigree specifies Θij for all i,j in a population => A is the additive genetic relationship matrix with individual elements: Aij = 2 Θij. V A = var(a i ) : the additive genetic variance for the trait

The G matrix The variance-covariance matrix G for the vector a is the square n x n matrix of genetic variances and covariances for n traits G = V A.1 COV A COV A.1n COV A.12 V A.2... COV A.2n... COV A.1n COV A.2n... V A.n... - For 1 trait - For 2 traits - For n traits

Software 1. Estimation of variance components ASReml(Gilmour) ASReml-R (Gilmour) WOMBAT (Meyer) * VCE (Groeneveld) DFREML Genstat, SAS.. Kinship MCMCglmm (Hadfield) 2. BLUP runs for breeding values (requires prior estimates of variance components) * PEST (Parameter ESTimation: Groeneveld) Pedigree Viewer (Kinghorn)

MCMCglmm : inférence Bayésienne 1.Le principe VraisemblanceBayésien Utilise les données observées + une distribution à priori (expertise, étude préliminaire…) Suppose que les paramètres sont fixes avec une valeur inconnue à estimer Suppose que les paramètres suivent une distribution inconnue Estimer des paramètres θ (ici par exemple σ 2 A ou σ 2 E )

MCMCglmm : inférence Bayésienne 1.Le principe Estimer des paramètres θ (ici par exemple V A et V E ) Théorème de Bayes : π(θ | data) = L(data | θ) p(θ) distribution à priori des paramètres vraisemblance des données sachant les paramètres Distribution à posteriori des paramètres sachant les données

MCMCglmm : inférence Bayésienne 2. Comment comparer les modèles Ajustement du modèle : plus il y a de paramètres, plus la déviance est petite (ou la vraisemblance est grande) VraisemblanceBayésien Critère d’Information d’Akaïke DIC AIC = −2log(L(θ))+ 2×np np est le nombre de paramètres compromis entre qualité de l’ajustement et complexité d’un modèle

Partie 2. Modèle multivarié But: décomposer la variance phénotypique de plusieurs caractères et estimer la covariance (ou corrélation) génétique entre les traits

Two traits can covary because: 1) Influenced by same (or linked) genetic loci (i.e., pleiotropy, linkage) 2) Influenced by same environmental effects (e.g. more food bigger size and larger clutch size) => Covariance can be partitioned as variance hence for 2 traits 1 & 2: V P1 = V A1 + V E1 V P2 = V A2 + V E2 COV P.12 = COV A.12 + COV E.12

Animal model framework extends to multiple traits If traits are correlated, measurements on one trait are informative for the other (even if unmeasured) Additive genetic covariance : covariance between two traits that is due to additive genetic effects Often rescaled to genetic correlation -1< r G <1 Example: Estimating genetic correlations between sexes r G = COV A12 √(V A1.V A2 ) Advantages of multivariate models

Any questions..? « L’Ecoute », Victorien Bastet

FIXED effect  When the levels of interest are those of the study  Tells you the impact of each factor on the mean  Costly in DF  E.g. sex, categorical, 2 levels = male / female age, continuous, 4 levels = 1-4 yrs old RANDOM effect  When the levels of the study are a random sample from a larger population  Tells you the part of the variance explained by each factor  Uses 1 DF  E.g. Maternal identity FIXED or RANDOM ? Comparing modelsUnivariateMutlivariateModel structurePitfalls

If a variable can be expected to have V A ≠ 0, do not include it as fixed effect, but rather as covariate in a multivariate animal model Provide V P(obs) from raw data as well as V P = V A + V E When implementing R = h 2 S, use similar fixed effects for estimations of h 2 and S Prefer V A or CV A to h 2 when comparing studies Rules of thumb on fixed effects Wilson Journal Evolutionary Biology Comparing modelsUnivariateMutlivariateModel structurePitfalls

YEAR as FIXED effect  Removes variance due to between year environmental differences, e.g. population density, climate  Estimate impact of the mean of each year (BLUEs) YEAR as RANDOM effect  Estimates how much of the total phenotypic variance is explained by between year environmental differences, e.g. population density, climate  Typically if n > 20 FIXED or RANDOM ? The example of year Comparing modelsUnivariateMutlivariateModel structurePitfalls

Accounting for non-genetic causes of resemblance also relies on data => Best way to distinguish gene/environment effects on phenotypic similarities is to combine animal model + cross-fostering The delicate use of fixed effects Misassigned paternities Difficulty to analyse non-gaussian traits (e.g. survival) Computational complexity: beware of the black box!! Pitfalls Comparing modelsUnivariateMutlivariateModel structurePitfalls

Suitable for complex and incomplete pedigrees => ideal for the available long-term dataset Not restricted to one level of relatedness  Makes full use of all data simultaneously  Estimates are more precise  Higher power (to detect low h 2 ) Less susceptible to environmental biases BUT this all depends on the quality of the data Advantages of the animal model Comparing modelsUnivariateMutlivariateModel structurePitfalls