Séminaire 8INF952 Visual Analytics – Cours II Dessin de graphes Arbres, graphes Cartes interactives Graphes.

Slides:



Advertisements
Présentations similaires
Voyager à l’aide de l’optimisation combinatoire Simon de Givry
Advertisements

What does en mean? The object pronoun en usually means some or of them.
and a justification for level 4
PURCHASING PHASE REVIEW Cornerstones of Purchase baseline
Structures de données IFT-2000
Déjeuner du matin Jacques Prévert
Finger Rhyme 6 Summer Term Module 6 Culturethèque-ifru2013 May not be copied for commercial purposes.
Visualisation de lInformation Arbres Et Hiérarchies Micheal El-Betjali DIVA Département dInformatique Université de Fribourg, Suisse.
Laboratoire des outils informatiques pour la conception et la production en mécanique (LICP) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 1 Petri nets for.
Block 2A: le 17 Septembre  SILENTLY complete the spelling worksheet.  When you’re finished, study for your make-up alphabet quiz!!
Les verbes en -er. –er 5000 –er verbs !!!  They are called REGULAR verbs because about 5000 verbs have the same endings.  It’s a good idea to learn.
Livre page 48. There are 4 different ways to form questions. Félicitations!! You already know 2 of the ways ☻ We have not “officially” studied this concept.
3 Les Verbes -ER Talking about people’s activities Les normes: –Communication 1.2: Understanding the written and spoken language –Comparisons 4.1: Understanding.
C’est combien ? Les euros
Le passé composé The perfect tense Eg: J’ai mangé une pizza I have eaten/ate a pizza.
WALT: To talk about the internet in French.
Mon Ecole WALT: Promote The Cornwallis Academy
Le Comparatif et le Superlatif
Let’s go back to the verb endings. What are our 3 infinitive endings? ER IR RE What is an infinitive? An unconjugated verb In other words, a verb in the.
Faith and Light International Formation Session 2010 Energizing Meetings
PRESENTATION + QUESTIONS 90sec. +90sec. TOTAL: 3 minutes The examiner will stop marking after 3mins! Start your presentation by saying what you are going.
INDIVIDUAL ORAL AB INITIO.
Forming questions in French
Le superlatif Comparing people and things within a group.
24/01/2007EGC 2007 : Namur Auber David Université Bordeaux I Visualisation de graphes avec Tulip : exploration interactive de grandes masses de données.
Français 2, 5 janvier 2015 Describe your holiday break, use the past tense. Things you did or ate. What is the difference between here and there? Sage.
I can use longer and more complex sentences by understanding and using comparisons.
Year 10. Bon appetit unit. Introducing ‘en’. ‘en’ – ‘some of it’ or ‘some of them’ ‘En’ is a small but important word in French that is commonly used.
Structures de données et algorithmes – TP7 Maria-Iuliana Dascalu, PhD
Formatting of game by Candace R. Black © All rights reserved. Formatting of Game by Candace R. Black © All Rights Reserved. This line of text.
Les pronoms objets Mme Zakus. Les pronoms objets When dealing with sentences, subjects are part of the action of the verb. In other words, they “ do ”
La mémoire(1): Comment bien travailler
Your team’s name. Préselection file You have just downloaded the preselection file: it’s the first step for you to win the challenge! In this file, you.
C’est lundi, le 16 septembre 2013 Les Objectifs: NS 1.1 Students engage in conversations, provide & obtain info. Express feelings & emotions, and exchange.
Irregular Adjectives Not all adjectives are made the same.
Bienvenue and Welcome to Our French II Live Lesson! We will begin shortly!
Adjective agreement the wizard way
Modèles d’interaction et scénarios
Card sorting Cut out the cards, then try to sort them into 4 groups. You’ll need to think about: -What the words mean -How they’re spelt -Which ones you.
PC. 1. Lisez ce texte. 1. Lisez ce texte. 2. Faites un deuxième exemplaire du texte en dessous. 2. Faites un deuxième exemplaire du texte en dessous.
Welcome everyone.
CONTRACTIONS  How to use “À” to say where you are going  How to use “DE” to say where you are coming from.
Celebrity Photo Album by M. Rocque. La Description You are going to see several celebrities. For each celebrity say one or two adjectives to describe.
Let’s enjoy making Session 2. Let’s enjoy making: Session 2 Les déménageurs sont arrivés !
Object pronouns How to say “him”, “her”, “it”, “them”
1. Est-ce que Est-ce que, literally translated "is it that," can be placed at the beginning of any affirmative sentence to turn it into a question: Je.
WE’RE ALMOST DONE – CONGRATULATIONS! LE PRONOM « Y »
WALT: how to tell the time in French WILF: to be able to understand ¼ past, ½ past, ¼ to and o’clock (level 2) to be able to understand all times in French.
The child handling the topic with a gesture Sari Karjalainen, University of Helsinki, Department of Speech Sciences _____________________________________________________________________________________________________________.
WILF: TO BE ABLE TO GIVE AN OPINION FOR LEVEL 3
1. Introduction.
The Passé Composé Objective: to talk about things we have done on a visit to explain what events happened to speak and write about events in the past.
What’s the weather like?. Look at the verb phrase fait-il above Turn it around and you have il fait The phrase Il fait can be used to describe lots of.
Comptes les points noirs !!! Elles sont droites ou courbées, les lignes?
Notes for teacher Make sure pupils line up and enter the classroom in absolute silence, but greet them warmly at the door. For the first part of the lesson.
The comparative and superlative b In this lesson you will learn how to use the comparative and superlative in a sentence. b 1. We will discuss the translation.
Clique Percolation Method (CPM)
OBJECT PRONOUNS WITH THE PASSÉ COMPOSÉ Page 122. Placement  With all object pronouns, placement is the same. DirectIndirectPlaces De+ nouns or ideas.
Negative sentences Questions
Perfect tense with ÊTRE. When do you use the perfect tense with être?  The perfect tense with être is also used to describe an action in the past which.
Un petit peu de grammaire… Le passé composé. On récapitule…le verbe “être” Jesuis Tu es Il est Elle est Nous sommes Vous êtes Ils sont Elles sont.
Séminaire 8INF952 Visual Analytics – Cours II Dessin de graphes Graphes planaires Graphes ‘mous’ Méthodes spectrales.
UNITÉ II: LEÇON 6 PARTIE B: LES MOIS ET LA DATE. LES MOIS DE L’ANNÉE janvier January.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
IP Multicast Text available on
Réunion service Instrumentation Activités CMS-Traces
Samples for evaluation from All Charts & Templates Packs for PowerPoint © All-PPT-Templates.comPersonal Use Only – not for distribution. All Rights Reserved.
High-Availability Linux Services And Newtork Administration Bourbita Mahdi 2016.
Transcription de la présentation:

Séminaire 8INF952 Visual Analytics – Cours II Dessin de graphes Arbres, graphes Cartes interactives Graphes

Dessin de graphes Un graphe et sa topologie G = (V, E) Calculer une position pour chaque sommet respectant certains critères « esthétiques » Symétrie spatiales des sous-graphes isomorphes Minimisation des croisements d’arêtes Longueur des arêtes similaires En gros: bonne lecture de la « structure » du graphe, respect des distances entre les sommets

Dessin de graphes Bonne lecture de la structure du graphe (?)

Dessin de graphes Bonne lecture de la structure du graphe (?)

Dessin de graphes Bonne lecture de la structure du graphe (?)

Dessin de graphes Bonne lecture de la structure du graphe (?)

Dessin de graphes Bonne lecture de la structure du graphe (?)

Dessin de graphes Bonne lecture de la structure du graphe (?)

Dessin de graphes Bonne lecture de la structure du graphe (?)

Dessin de graphes Bonne lecture de la structure du graphe (?)

Aesthetics (1) What is a nice drawing ? What makes drawings understandable or readable? How can we measure quality? Can we formalize aesthetics ? Tutorial F. Brandenburg

Aesthetics (1 bis) What is a nice drawing ? / What makes drawings understandable or readable? How can we measure quality? / Can we formalize aesthetics ? Chinese proverb ”A picture is worth a thousand words“ R. Feynman (Nobel prize in Physics) ”It’s all visual“ R.A. Earnshaw (a poineer in computer graphics, 1973) ”visualization uses interactive compute graphics to help provide insight on complicated problems, models or systems“. ”Scientific visualization is exploring data and information graphically, gaining understanding and insights into the data“ R. Hamming (1973) "the purpose of computing is insight not numbers"

Aesthetics (2) recognize complex situations faster learn things more easily (sketch of a proof) H. Purchase with students experiments on graph drawings (GD97) chess players recognize patterns recognize graph properties a path between two nodes connectivity Hamilton cycle (on the outer face) interactive graph drawing competition (GD2003 ) Tutorial F. Brandenburg

Aesthetics (3) D.E. Knuth (GD' 1996) ”Graph drawing is the best possible field I can think of: It merges aesthetics, mathematical beauty and wonderful algorithms. It therefore provides a harmonic balance between the left and right brain parts.“ “A good graph drawing algorithm should leave something for the user‘s satisfaction.” No perfect algorithm! R. Tamassia (IEEE SMC 1988, p.62) aesthetics are criteria for graphical aspects of readability

Aesthetic Criteria (1) visual complexity how long does it take to ”see everything“, to get the overview regularity repetitions, fractals symmetry geometric symmetry by rotation, reflection, translation consistence coincidence of the picture and the intended meaning Tutorial F. Brandenburg

Aesthetic Criteria (2) form, size and proportionality common drawing styles e.g. biochemical pathways, organigrams, ER- diagrams, algorithmic efficiency seconds, not hours/years Tutorial F. Brandenburg

Drawing Styles polyline drawings reduce bends, no sharp angles, polish by with Bezier splines straight-line uniform (short) edge length orthogonal drawings minimize bends planar drawings minimize crossings and bends grid embeddings grid coordinates for nodes and bend-points Tutorial F. Brandenburg

Aesthetics Formalized resolution or geometric criteria area (2D) / volume (3D), height, width, aspect ratio edge length (sum, max) grid drawings angular resolution (avoid small angles)

Aesthetics Formalized discrete criteria crossings bends load factor (overlaps of nodes) congestion (parallel edges) edit complexity (insertions, deletions, moves) symmetry center father above the children geometric symmetry (rotation, reflection) graph symmetry, graph isomorphy Tutorial F. Brandenburg

Dessin de graphes Layout Rank Assignment Grid Layout Compaction Augment. (Two Layer) Crossing minimization Subgraph (extraction) EdgeInsertion Hierarchy Layout Hierarchy ranking DFS ranking Median heuristic Barycenter heuristic Split heuristic Greedy switch Greedy insert Cross. Min. Opt. Fast Hierarchy Layout Planar subgraph Tree Layout Sugiyama Layout Spring Layout Tutte Layout Planar Layout Visibility representation Convex Layout FPP Layout Schnyder Layout Ranking Cross. Min. Compute coord. Planar Grid Layout Shortest Path Planarize subgraph Insert edges No crossings Acyclic subgraph Planarization Background of Graph Drawing - an Overview Adapted from Mutzel et al with permission.

Visualisation de structures arborescentes Classifications / Taxonomies Structures et représentations usuelles Structures de données et algorithmes performants

Tree of Life: 10M espèces Pour tenir compte d’attributs sémantiques David Hillis, Science 300:1687 (2003)

Dessin d’arbres Published in Wired Magazine. Source: Lucent Technologies

Dessin d’arbres Dessin le plus « naïf » L’ordonnée d’un sommet correspond à sa profondeur dans l’arbre L’abscisse correspond à son rang parmi les feuilles

Dessin d’arbres Wetherell 1979 Reingold Tilford 1981 Walker 1990 Dessin le plus « classique » L’ordonnée d’un sommet correspond à sa profondeur dans l’arbre Economie d’espace entre sommets cousins éloignés

Dessin d’arbres Walker 1990

Dessin d’arbres Walker 1990

Dessin d’arbres Walker 1990

Dessin d’arbres Walker 1990

Dessin d’arbres Eades 1992 Cercles concentriques: le rayon sur lequel se trouve un sommet correspond à sa profondeur dans l’arbre Meilleure occupation de l’écran (« les coins ») Certains « secteurs » restent inoccupés … Radial view

Radial Tree Drawings

Radial Tree Drawings

Dessin d’arbres Variantes (radial) Sunburst Stasko, Zhang 2000

Dessin d’arbres Variantes (top-down) Icicle plot Kruskal Landwehr 1983

Dessin d’arbres Variantes Nested boxes (Onion graphs) Sindre 1993 H-tree (Eades 1992)

Dessin d’arbres Variantes (oignons) Information Cube. Courtesy of J. Rekimoto, Sony Computer Science Laboratory, Japan

Dessin d’arbres Balloon / Bubble layout Kazman 1995 Melançon Herman 1998

Dessin d’arbres Balloon / Bubble layout Grivet, Auber, Domenger, Melançon 2004

Dessin d’arbres RINGS Teoh, Ma 2005

Dessin d’arbres : 3D Cone Trees Ombres, transparence Rotation pour accéder aux éléments Xerox PARC

3DSoftVis, Technical University of Vienna, Nokia (EC project), Courtesy of Claudio Riva. Image courtesy of Dave Snowdon, Nottingham University Image courtesy of M. Hemmje, GMD, Germany Cones Trees

Dessin d’arbres Algorithmes performants à tous points de vue Le nombre d’arêtes est proportionnel au nombre de sommets Il suffit de parcourir les sommets et arêtes un nombre constant de fois (complexité linéaire) – l’algorithme tient compte de la topologie du graphe Les représentations sont « lisibles » (pas de croisement d’arêtes – planarité) La disposition des sommets est facilement « interprétable »

Graphes acycliques Les sommets sont naturellement ordonnés On les dispose « par niveaux » On cherche à minimiser les croisements d’arêtes

Graphes acycliques On les dispose « par niveaux » On cherche à minimiser les croisements d’arêtes La disposition optimale des sommets revient à résoudre un problème d’ordonnacement Trouver un ordre des sommets du niveau k+1 qui minimise le nombre de croisements d’arêtes NP-difficile

Graphes acycliques Introduction de courbes splines pour améliorer la lisibilité des diagrammes

Graphes acycliques Nettement moins performants que le dessin d’arbres Introduction de sommets additionnels le long de certaines arêtes

Dessin ou interaction ? Insatisfiabilité des critères esthétiques Minimisation du nombre de croisements NP- complet … Apport de l’interaction Essentiel dans l’activité d’exploration et de « découverte »

Graphes: représentations matricielles S’appuie sur la matrice d’adjacence « Lisibilité » de la structure du graphe: bon ordonnancement des sommets

Graphes: représentations matricielles Les entrées peuvent encoder des attributs des sommets Passent aux graphes contenant un très grand nombre d’arêtes

Dessin ou interaction ? Cartes arborescentes Meilleure occupation de l’écran Les attributs des feuilles de l’arbre sont mis en avant-plan (par opposition à la topologie du graphe)

TreeMaps - SmartMoney

Cartes arborescentes / TreeMaps « Space filling » Lisibilité des attributs des feuilles Proportion relative des rectangles (aspect ratio) Délimitation des rectangles

Cartes arborescentes / TreeMaps Johnson & Schneiderman 1991

Cartes arborescentes / TreeMaps Comparaison aisée des feuilles Les sommets internes ne sont là que pour incarner la classification L’accent est mis sur les attributs des feuilles à l’aide d’artifices graphiques simples: couleurs, aires des rectangles, … SmartMoney Peets coffee

TreeMaps – Peet’s Coffee

TreeMaps Pebbles Voronoi

TreeMaps : variation Beamtrees : améliorer le rendu par artifice graphique F. Van Ham 2002

BeamTrees

DAGS: combinaison de moyen Extension au cas de graphes acycliques orientés Héritage multiple Lorsque les clusters se chevauchent

DAGS: combinaison de moyen Déploiement du DAG en arbre

DAGS: combinaison de moyen Développement d’interaction adaptées

Arbres de grande taille Le dessin ne suffit pas

Arbres de grande taille Identification de sous-arbres atypiques Le nombre de feuilles suit une loi gaussienne Calcul de paramètres combinatoires et seuillage

Arbres de grande taille Interaction (SpaceTree)

Arbres de grande taille - Hyperbolic geometry Euclidean geometry is used in all Graph Drawing techniques What if we draw in hyperbolic geometry? H3Viewer Potential gain in space: exponential area in Euclidean geometry become linear area in Hyperbolic geometry Hyperbolic layout

Euclidean geometry is built upon a set of axioms One of which asserts: 5th postulate. Given a line and a point outside of this line, there is only one line going through that point and parallel to the original line Hyperbolic layout

Change it: Given a line and a point outside of this line, there is more than one line going through that point and parallel to the original line Hyperbolic geometry What if the 5th postulate was logically independent from other axioms? Hyperbolic layout

A two-dimensional model: the Klein model Points are points in an open disk Lines are (euclidean) line segments in the disk Intersection is the usual (euclidean) intersection A’ B’ B A L M N Lines M and N are parallel to line L Negation of 5th postulate is valid Impact on measures of lengths (distance) and angles Segments AB and A’B’ are congruent Hyperbolic layout

Impact on layout of graphs. An example: benefits when laying out a tree. Courtesy T. Munzer, Stanford University, Hyperbolic layout Xerox Parc

1. Divide the available space into wedges according to the width of subtrees 2. Place successors at fixed distance from their ancestor. Recursively cut their respective wedges, defined using parallel lines to ancestor’s cut. P P QRS Q R S Unveiling the mystery Where are the benefits? Look at a layout algorithm — in Euclidean geometry (first). Hyperbolic layout

Unveiling the mystery Where are the benefits? Now look at the layout algorithm — in hyperbolic geometry. P Q R S Wedges meet at infinity P QRS Hyperbolic layout

Hyperbolic layout as an alternative Computation in hyperbolic geometry and translation to Euclidean model relies on graphics hardware Hyperbolic layout Summary — Hyperbolic Layout