Analyse Factorielle des Correspondances Généralisation de l’A.C.P. adaptée au traitement de données qualitatives se présentant sous la forme d’un tableau.

Slides:



Advertisements
Présentations similaires
Réseau des chefs de projets rénovation urbaine Journée locale déchanges Le Mans – 13 mai 2011.
Advertisements

Corrélation Position du problème Définition covariance (X,Y) r =
ANALYSE GÉOMÉTRIQUE DES DONNÉES
Panel Apec entreprises 2011 Région Midi-Pyrénées 15 février 2011.
C1 Bio-statistiques F. KOHLER
Analyse Factorielle des Correspondances
Analyse des proximités
Le 13 fevrier 2013 Association Pour l’Emploi des Cadres, Ingénieurs et Techniciens de l’Agriculture, de l’Agro-alimentaire et de l’Environnement.
Indépendance & Khi-deux ²
Projet: La France 1. Choisissez de
ANALYSE FACTORIELLE DES CORRESPONDANCES
Problème Autre formulation :
Programmes de calculs (2) Série n°2
Qualificatif carpes au coup
« Analyses descriptives multidimensionnelles »
REPRESENTATION GRAPHIQUE D ’UNE FONCTION AFFINE
COURS STATISTIQUE - DESCRIPTIVE DEFINITIONS
STATISTIQUE DESCRIPTIVE ÉLÉMENTAIRE
Enquête auprès des sortants du dispositif PAVA ( jeunes) Avril à Septembre 2006 Résultats généraux Enquête PAVA (Phase 1) 1.
234 dossiers reçus 172 dossiers validés 152 dossiers effectivement réglés (qui ont justifié leur achat) Ce qui représente 96,3 % du budget global RESULTAT.
Cliquez ici pour commencer
Un repas de champignons !! un traitement à vie...un décès
Présentation de l’ACP à travers un exemple
Régions en France.
Sériation et traitement de données archéologiques
TABLEAUX CROISES.
Bilan de repositionnement des opérations de droit d’option à fin avril 2010 CCE du 4 mai.
Fj_171_géographie Marta Bříštělová.
Rapport financier 2012 EXERCICE Rapport financier 2012.
Analyse Factorielle des Correspondances
Exemple du Syndrome du Canal Carpien,
Problème Autre formulation :
Les premiers pas vers les calculs statistiques
Jeu Addition Magique.
Panel Apec entreprises 2011 Région Franche-Comté 15 février 2011.
Cellule nationale d’animation RRF Synthèse des actions des RR en matière de gestion de l’espace et attentes repérées vis-à-vis du transfert Mai 2011 Groupe.
1 Participation française au programme INTERREG IVC Séminaire national Christophe ULIASZ - Région Nord-Pas de Calais Autorité nationale française 12 mai.
Fabrice Hatem, AFII Assemblée générale NFX 9 novembre 2006 Centres de R&D : Le point sur la compétition entre territoires d’accueil en Europe.
European Union | European Regional Development Fund Interreg Europe : Gouvernance du programme et modalités d’accompagnement des acteurs français Patricia.
Florence Jany-Catrice Université Lille1 et Clersé Nord-Pas de Calais : richesses et pauvretés quelques indices… 1.
Analyse de données Cours 3 Analyse en composantes principales (ACP)
Introduction à la programmation (420-PK2-SL) cours 18 Gestion des applications Technologie de l’information (LEA.BW)
Test 2.
ou comment savoir si les différences observées sont significatives
Les dangers des drogues
Les plus beaux villages de France Mardi 4 juin, les Français ont voté pour élire leur village préféré parmi 22 villages de France. Je vous propose de.
FAMILLES A ENERGIE POSITIVE En route vers la Saison !
Privé /personnel IMPRESSIONNANT REGARDEZ Je réfléchis avant de voter lors des prochaines élections ! C'est simple, il suffit de regarder leur nombre.
Les grands bassins fluviaux(Seine,Loire,Garronne et Rhône) couvrent 63% du territoire et représentent 70% de l’écoulement total La Seine prend sa source.
Analyse de données avec R
Des endroits Magnifiques
Observatoire de l’équipement audiovisuel des foyers
ACP visualisation Représentation graphique: projection dans un plan de n individus à p caractères Un individu est un point d’un espace à p dimensions.
BIOSTATISTIQUES Définitions.
Tests relatifs aux variables qualitatives: Tests du Chi-deux.
Regions of Metropolitan France GeoCurrents Map Nord-Pas-de-
Manifestation nationale des Travaux Publics pour l’investissement public et l’emploi Retombées.
Séminaire PRR Florac mai 2008 Fonds social européen.
Plans d'expérience Méthode Taguchy Analyse de la variance Anavar.
Chapitre 4 Statistique descriptive 1. Echantillonnage statistique population On appelle population, un ensemble d’individus auquel on s’intéresse échantillon.
Introduction à l’analyse multidimensionnelle Master BOE LATLI Adrien
Le projet « indicateurs 21 » de la région Nord-Pas de Calais et les enjeux de légitimité : le cas de l’ISS Florence Jany-Catrice Université Lille1 Membre.
UNE BANQUE AU SERVICE DU DEVELOPPEMENT DU SECTEUR PUBLIC LOCAL Association des Maires d’Ille-et-Vilaine 30 août 2013.
Le dispositif Cifre Evaluation du dispositif Esprit scientifique, Esprit d’entreprise.
Exemple d’A.C.M. Coordonnées, Cos² des individus et classification.
Assemblée générale ordinaire 11 avril 2015 Assemblée générale Uniagro 11 avril
STATISTIQUE DESCRIPTIVE
La France des provinces aux régions. l’ouest la Normandie la Bretagne.
Dates des élections professionnelles 2016
Ancienne carte des 22 régions métropolitaines
Transcription de la présentation:

Analyse Factorielle des Correspondances Généralisation de l’A.C.P. adaptée au traitement de données qualitatives se présentant sous la forme d’un tableau de contingence.

Le tableau de données initial nombre d’individus ayant choisi simultanément les modalités x i et y j Y possède m modalités X possède n modalités Soient X et Y deux variables qualitatives ayant respectivement x n et y m modalités. Le tableau de contingence K formé à partir de ces deux variables aura autant de lignes (colonnes) que la variable X a de modalités (n) et autant de colonnes (lignes) que la variable Y a de modalités (m).

ABCDEFGH Ile-de-France Champagne-Ardennes Picardie Haute-Normandie Centre Basse-Normandie Bourgogne Nord-Pas de Calais Lorraine Alsace Franche-Comté Pays de la Loire Bretagne Poitou-Charentes Aquitaine Midi-Pyrénées Limousin Rhône-Alpes Auvergne Languedoc-Roussillon Provence-Alpes-Côte d'Azur Corse Effectifs marginaux Effectifs marginaux Le tableau de données initial Exemple : Résultats du Baccalauréat 76 Les individus n’apparaissent qu’au travers de leurs effectifs La Basse-Normandie représente 4 446/ =2.20 % Le bac E représente 5 333/ =2.64 %

Méthodologie de calcul Dans une AFC, les lignes et les colonnes jouent le même rôle L’AFC consiste à considérer successivement les lignes et les colonnes comme les individus d’une ACP (les colonnes et les lignes étant successivement les variables) AFC = double ACP (sur les profils lignes et les profils colonnes)

Méthodologie de calcul Le nombre de valeurs propres est égal au minimum entre le nombre de lignes moins 1 et le nombre de colonnes moins 1 Min(n-1,m-1) = Min(22-1,8-1) = 7 Toutes les valeurs propres sont comprises entre 0 et 1

Méthodologie de calcul Le nombre de valeurs propres est égal au minimum entre le nombre de lignes moins 1 et le nombre de colonnes moins 1 Min(n-1,m-1) = Min(22-1,8-1) = 7 La somme des valeurs propres multipliée par le nombre d’individus est égale au  ² calculé du test du même nom. ~>  ² à (22-1)*(8-1)=147 ddl Pour  =5 %,  ²(147)=176.3

Méthodologie de calcul Identificateur Poids relatif Distance à l'origine Axe 1Axe 2Axe 1Axe 2Axe 1Axe 2 Ile-de-France Champagne-Ardennes Picardie Haute-Normandie Centre Basse-Normandie Bourgogne Nord-Pas de Calais Lorraine Alsace Franche-Comté Pays de la Loire Bretagne Poitou-Charentes Aquitaine Midi-Pyrénées Limousin Rhône-Alpes Auvergne Languedoc-Roussillon Provence-Alpes-Côte d'Azur Corse CoordonnéesContributions Cosinus carrés

ABCDEFGH Ile-de-France | Corse | | | | | | | | | 736 Effectifs marginaux Effectifs marginaux ABCDEFGH Total 22.56%10.67%16.20%22.77%2.64%9.73%15.21%0.22% Corse 44.43%4.21%11.55%24.18%1.22%3.67%10.73%0.00% Total Centre 22.73%10.23%15.64%23.54%2.65%9.65%15.17%0.40% Total   Méthodologie de calcul Poids relatif Distance à l’origine % 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% ABCDEFGH TotalCorseCentre Méthodologie de calcul

Représentation graphique

Méthodologie de calcul Identificateur Poids relatif Distance à l'origine Ile-de-France Champagne-Ardennes Picardie Haute-Normandie Centre Basse-Normandie Bourgogne Nord-Pas de Calais Lorraine Alsace Franche-Comté Pays de la Loire Bretagne Poitou-Charentes Aquitaine Midi-Pyrénées Limousin Rhône-Alpes Auvergne Languedoc-Roussillon Provence-Alpes-Côte d'Azur Corse Axe 1Axe Coordonnées Axe 1Axe Contributions Axe 1Axe

Méthodologie de calcul Axe 1Axe Contributions Axe 1Axe Cosinus carrés 1/22=4.55 %

Méthodologie de calcul 1/8=12.5 %

Résultats sans la Corse Numéro Valeur propre Pourcentage cumulé Somme Effectif Produit

Résultats sans la Corse 1/21=4.76 % 1/8=12.5 %

Représentation graphique sans la Corse