Exploitation avec Excel. Ouvrir un fichier Excel : Le Classeur Excel Il comprend des lignes numérotées : 1, 2, 3… et des colonnes : A, B, C…
Tableau de valeurs : entrer les valeur de i1 et i2 en colonnes Utiliser les colonnes B et C à partir de la ligne 2. G2 G1 i1 i2 0,0 10,0 7,0 15,0 10,5 20,0 13,5 25,0 17,0 30,0 35,0 23,0 40,0 26,0 45,0 29,0 50,0 31,0 60,0 36,0 70,0 39,0 i1 i2 0,0 10,0 7,0 15,0 10,5 20,0 13,5 25,0 17,0 30,0 35,0 23,0 40,0 26,0 45,0 29,0 50,0 31,0 60,0 36,0 70,0 39,0 Lorsque le tableau est rempli, il faut le mettre en forme.
Mettre en forme à l’aide de l’icône :
Sélectionner les valeurs des deux colonnes : Dans le menu Format , sélectionner cellule, puis nombre . Dans catégorie, choisir nombre, comme nombre de décimales choisir 1. Puis sélectionner alignement : horizontal : centré et vertical : centré Faire de même pour les valeurs des colonnes D et E, mais choisir comme nombre de décimales : 3.
+ Pour calculer avec Excel : Dans la cellule D3, taper la formule suivante : =SIN(B3*PI()/180) Pourquoi cette formule ? Elle permet de calculer la valeur du sinus de l’angle i1 de la cellule B3 D’autre part, il a fallu convertir la valeur de l’angle en radian car Excel donne le sinus d’un angle exprimé en radian Pour recopier la formule vers le bas. Sélectionner la cellule D3. Placer le pointeur de la souris en bas à droite de la cellule D3. Un plus noir (+) doit apparaître. Faire un double clic. La formule se copie vers le bas. + Dans la cellule E3, taper la formule suivante : =SIN(C3*PI()/180) Recopier la formule vers le bas en utilisant la méthode précédente.
On obtient le tableau de valeurs suivant. Maintenant, on va réaliser la représentation graphique. Etude préliminaire : Sélectionner les valeurs des colonnes D et E de la ligne 3 à la ligne 4, à l’aide de la souris (cliquer-glisser) Suite : page suivante
Cliquer sur l’assistant graphique
Sélectionner nuage de points et cliquer sur suivant
Donner un titre au graphique, Donner un nom aux axes Cliquer sur Quadrillage Quadrillage
Quadrillage principal en X Quadrillage principal en Y Cocher : Quadrillage principal en X Quadrillage principal en Y Suivant > Cliquer sur suivant : Terminer Cliquer sur terminer :
On obtient le graphe suivant que l’on peut placer à côté du tableau. Question : A-t-on bien le graphe désiré? Données source.. On va vérifier la position des séries utilisées. Il faut cliquer sur le graphique, puis sur Données source…
Série Cliquer sur Série
Grâce aux données source, on peut répondre à la question Valeurs en X: C’est la colonne D c’est-à-dire les valeurs de sin i1 Valeurs en Y: C’est la colonne E c’est-à-dire les valeurs de sin i2 En conséquence, le graphe affiché est sin i2 = f (sin i1) et non sin i1 = f (sin i2) On va changer les valeurs en X et les valeurs en Y Suite
Cliquer sur l’icône
Cliquer sur l’icône Sélectionner la colonne E (de la ligne 3 à la ligne 14)
Cliquer sur l’icône
Cliquer sur l’icône Sélectionner la colonne D (de la ligne 3 à la ligne 14)
Cliquer sur l’icône
Le graphe obtenu est : sin i1 = f (sin i2) Maintenant, on va mettre en forme le graphe Faire un double clic sur la zone graphique : On obtient l’affichage suivant :
Faire un double clic sur la zone de traçage : Sélectionner la teinte : bleu glacier Cliquer Cliquer sur OK Sélectionner la teinte : ivoire Cliquer sur OK
Faire un clic droit sur la série de données Faire un clic droit sur la série de données. On obtient l’affichage suivant. Cliquer sur Format de la série de données. Pour la marque : en premier plan sélectionner la couleur bleue, en arrière-plan la couleur turquoise clair et comme style le plus (dans cet ordre) Cliquer
On obtient le graphique suivant que l’on peut encore améliorer. On le fera plus tard. Grâce à Excel, on peut choisir un modèle mathématique adapté à l’étude. Il faut, sélectionner le graphique, cliquer sur l’icône graphique et sélectionner ajouter une courbe de tendance.
Comme les points sont sensiblement alignés, on choisit comme modèle : ‘’ Linéaire’’. C’est le modèle que l’on choisit chaque fois que les points sont sensiblement alignés que la droite passe par l’origine ou non. Cliquer Cocher Cliquer
On obtient l’affichage suivant. Excel donne l’équation de la droite tracée Maintenant, il faut interpréter le résultat obtenu : sin i2 joue le rôle de x et sin i1 joue le rôle de y sin i1 = 1,49 sin i2
Excel donne l’équation de la représentation graphique obtenue grâce à une étude statistique. Le coefficient de détermination permet de savoir si le modèle utilisé est en adéquation avec la représentation graphique obtenue. Lorsque R 2 = 1, l’adéquation est parfaite. Si R 2 ≈ 1, il y une dépendance statistique entre les variables x et y. C’est souvent le cas en physique car on travaille avec des valeurs expérimentales. En physique, on travaille avec des valeurs expérimentales et c’est à partir des valeurs expérimentales que l‘on recherche une loi physique. Excel donne une valeur approchée de l’équation de la courbe. L’équation de la courbe comporte des termes qui sont négligeables : on peut considérer que le terme b est nul devant le terme a. Pour l’expérimentateur, le but est de trouver un modèle mathématique qui se rapproche le plus du modèle expérimental. Le coefficient de détermination R 2 permet de savoir si le modèle choisi est bien en accord avec les résultats expérimentaux. Remarque : Les calculatrices donnent souvent le coefficient de corrélation R. Dans ce cas le modèle utilisé est en adéquation avec les valeurs expérimentale si | R | ≈ 1.