1 DIFUSÃO 2. Mecanismos de movimento atômico DIFUSÃO TRANSPORTE DE MATERIAL POR MOVIMENTOS ATÔMICOS - Mecanismo da difusão - Fatores que influem na difusão - Difusão no estado estacionário - Difusão no estado não-estacionário
Eleani Maria da Costa - PGETEMA/PUCRS 2 DIFUSÃO EXEMPLOS PRÁTICOS DE PROCESSOS BASEADOS EM DIFUSÃO Dopagem em materiais semicondutores para controlar a condutividade Cementação e nitretação dos aços para endurecimento superficial Outros tratamentos térmicos como recristalização, alívio de tensões, normalização,... Sinterização Alguns processos de soldagem
Eleani Maria da Costa - PGETEMA/PUCRS 3 DIFUSÃO CONSIDERAÇÕES GERAIS O movimento atômico em líquidos é, em geral, mais lento que em gases, O movimento atômico em sólidos é bastante restrito, pois as forças de ligação atômicas são elevadas e também, devido à existência de posições de equilíbrio bem definidas
Eleani Maria da Costa - PGETEMA/PUCRS 4 DIFUSÃO CONSIDERAÇÕES GERAIS Os átomos em um cristal só ficam estáticos no zero absoluto Com o aumento da temperatura as vibrações térmicas dispersam ao acaso os átomos para posições de menor energia Movimentos atômicos podem ocorrer pela ação de campos elétrico e magnético, se as cargas dos átomos interagirem com o campo. Nem todos os átomos tem a mesma energia, poucos tem energia suficiente para difundirem
Eleani Maria da Costa - PGETEMA/PUCRS 5 Demonstração do Fenômeno da DIFUSÃO Antes do aquecimento Depois do aquecimento CuNi Cu Cu+Ni Solução sólida
Eleani Maria da Costa - PGETEMA/PUCRS 6 TIPOS DE DIFUSÃO Interdifusão ou difusão de impurezas Interdifusão ou difusão de impurezas (é o mais comum) ocorre quando átomos de um metal difunde em outro. Nesse caso há variação na concentração Autodifusão Autodifusão ocorre em cristais puros. Nesse caso não há variação na concentração
Eleani Maria da Costa - PGETEMA/PUCRS 7 MECANISMOS DE DIFUSÃO Vacâncias Vacâncias (é o mais comum, um át. da rede move-se p/ uma vacância) Intersticiais Intersticiais (ocorre com átomos pequenos e promovem distorção na rede) A difusão dos intersticiais ocorre mais rapidamente que a difusão de vacâncias, pois os átomos intersticiais maior mobilidade porque são menores. Além disso, há mais posições intersticiais que vacâncias na rede, logo, a probabilidade de movimento intersticial é maior que a difusão de vacâncias.
Eleani Maria da Costa - PGETEMA/PUCRS 8 MECANISMOS DE DIFUSÃO Contorno de grão Contorno de grão (importante para crescimento de grãos) Discordâncias Discordâncias (o movimento das discordâncias produz deformação e a recuperação do material) Fenômenos superficiais Fenômenos superficiais (importante para sinterização)
Eleani Maria da Costa - PGETEMA/PUCRS 9 A DIFUSÃO SÓ OCORRE SE HOUVER GRADIENTES DE: Concentração Potencial Pressão
Eleani Maria da Costa - PGETEMA/PUCRS 10 DIFUSÃO E ENERGIA Os átomos dentro de um material, em uma determinada temperatura, apresentam diferentes níveis de energia, sendo esta uma distribuição estatística Boltzmann estudou o efeito da temperatura na energia das moléculas em um gás.
Eleani Maria da Costa - PGETEMA/PUCRS 11 ENERGIA DE ATIVAÇÃO O interesse está nos átomos com energia suficiente para se mover Boltzmann n = f (e -Q/KT ) Ntotal n= número de com energia suficiente para difundir N= Número total de átomos Q= energia de ativação (erg/át) K= Constante de Boltzmann= 1,38x10 -6 erg/át
Eleani Maria da Costa - PGETEMA/PUCRS 12 ENERGIA DE ATIVAÇÃO Superfície Contorno de grão Vacâncias e intersticiais
Eleani Maria da Costa - PGETEMA/PUCRS 13 VELOCIDADE DE DIFUSÃO EQUAÇÃO DE ARRHENIUS V = c (e -Q/RT ) c= constante Q= energia de ativação (cal/mol) é proporcional ao número de sítios disponíveis para o movimento atômico R= Constante dos Gases= 1,987 cal/mol.k T= Temp. em Kelvin
Eleani Maria da Costa - PGETEMA/PUCRS 14 VELOCIDADE DE DIFUSÃO EQUAÇÃO DE ARRHENIUS logV = logc- Q/2,3R.(1/T) Y= b + mx Equação da reta
Eleani Maria da Costa - PGETEMA/PUCRS 15 VELOCIDADE DE DIFUSÃO EM TERMOS DE FLUXO DE DIFUSÃO J= M/A.t em kg/m 2.s ou at/m 2.s M= massa (ou número de átomos) A= área t= tempo
Eleani Maria da Costa - PGETEMA/PUCRS 16 DIFUSÃO NO ESTADO ESTACIONÁRIO Fonte: Prof. Sidnei Paciornik do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio
Eleani Maria da Costa - PGETEMA/PUCRS 17 DIFUSÃO NO ESTADO ESTACIONÁRIO PRIMEIRA LEI DE FICK expressa a velocidade de difusão em função da diferença da concentração (Independente do tempo) J= -D dC dx J= at/m 2.s=M/A.tD= coef. De difusão cm 2 /s dC/dx= gradiente de concentração em função da distância at/cm 3
Eleani Maria da Costa - PGETEMA/PUCRS 18 COEFICIENTE DE DIFUSÃO (D) Dá indicação da velocidade de difusão Depende: da natureza dos átomos em questão do tipo de estrutura cristalina da temperatura
Eleani Maria da Costa - PGETEMA/PUCRS 19 COEFICIENTE DE DIFUSÃO (D) O Coef. De difusão pode ser calculado a partir da equação: D = Do (e -Q/RT ) onde Do é uma constante calculada para um determinado sistema (átomos e estrutura)
Eleani Maria da Costa - PGETEMA/PUCRS 20 COEFICIENTE DE DIFUSÃO (D)
Eleani Maria da Costa - PGETEMA/PUCRS 21 COEFICIENTE DE DIFUSÃO (D) Fonte: Prof. Sidnei Paciornik do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio
Eleani Maria da Costa - PGETEMA/PUCRS 22 EFEITOS DA ESTRUTURA NA DIFUSÃO FATORES QUE FAVORECEM A DIFUSÃO Baixo empacotamento atômico Baixo ponto de fusão Ligações fracas (Van der Walls) Baixa densidade Raio atômico pequeno Presença de imperfeições FATORES QUE DIFICULTAM A DIFUSÃO Alto empacotamento atômico Alto ponto de fusão Ligações fortes (iônica e covalentes Alta densidade Raio atômico grande Alta qualidade cristalina
Eleani Maria da Costa - PGETEMA/PUCRS 23 EFEITOS DA ESTRUTURA NA DIFUSÃO Caso do Ferro (ALOTROPIA) O coeficiente de difusão dos átomos de Carbono no Fe ccc é maior que no cfc, pois o sistema ccc tem um fator de empacotamento menor (F.E. ccc= 0,68 e F.E. cfc= 0,74) ccc cfc
Eleani Maria da Costa - PGETEMA/PUCRS 24 EXEMPLO DE APLICAÇÃO DA PRIMEIRA LEI 20- O Carbono é difundido através de uma lâmina de aço de 15 mm de espessura. A concentração de carbono nas duas faces são 0,65 e 0,30 Kg/m 3 de Fe, os quais são mantidas constantes. Se Do e a energia de ativação são 6,2x10-7 m 2 /s e J/mol, respectivamente, calcule a temperatura na qual o fluxo de difusão será 1,43x10-9 Kg/m 2.s. k= 8,31 J/mol.k R= 1044K
Eleani Maria da Costa - PGETEMA/PUCRS 25 SEGUNDA LEI DE FICK (dependente do tempo e unidimensional) C= D C t x x
Eleani Maria da Costa - PGETEMA/PUCRS 26 SEGUNDA LEI DE FICK (dependente do tempo e unidimensional) C= -D 2 C t x 2 Suposições (condições de contorno) Antes da difusão todos os átomos do soluto estão uniformemente distribuídos O coeficiente de difusão permanece constante (não muda com a concentração) O valor de x na superfície é zero e aumenta a medida que avança-se em profundidade no sólido t=o imediatamente antes da difusão
Eleani Maria da Costa - PGETEMA/PUCRS 27 SEGUNDA LEI DE FICK (dependente do tempo e unidimensional)
Eleani Maria da Costa - PGETEMA/PUCRS 28 SEGUNDA LEI DE FICK uma possível solução para difusão planar Cx-Co= 1 - f err x Cs-Co 2 (D.t) 1/2 f err x 2 (Dt) 1/2 Cs= Concentração dos átomos se difundindo na superfície Co= Concentração inicial Cx= Concentração numa distância x D= Coeficiente de difusão t= tempo É a função de erro gaussiana
Eleani Maria da Costa - PGETEMA/PUCRS 29 DIFUSÃO
Eleani Maria da Costa - PGETEMA/PUCRS 30 DIFUSÃO Fonte: Prof. Sidnei Paciornik do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio
Eleani Maria da Costa - PGETEMA/PUCRS 31 CONSIDERAÇÕES GERAIS Os estágios finais de homogeneização são lentos A velocidade de difusão diminui com a diminuição do gradiente de concentração O gradiente de difusão varia com o tempo, gerando acúmulo ou esgotamento de soluto
Eleani Maria da Costa - PGETEMA/PUCRS 32 EXEMPLO DE APLICAÇÃO DA SEGUNDA LEI : Cementação Para algumas aplicações é necessário endurecer a superfície dos aços para conferir maior resistência ao desgaste. Um maneira de fazer isso é através do processo de cementação gasosa, na qual há um aumento da concentração de carbono na superfície através da introdução de átomos de carbono (proveniente de um gás, como o metano) por difusão à elevadas temperaturas. Considerando um aço cuja concentração inicial de carbono é 0,25% que seja submetido à cementação à 900 C e que a concentração de carbono na superfície seja aumentada e mantida a 1,2%, calcule quanto tempo é necessário para tingir uma concentração de 0,8% de Carbono a 5mm abaixo da superfície. D= 1,6x10-11 m2/s. R= 7,1 h