L’OPTIMISATION.

Slides:



Advertisements
Présentations similaires
CHAPITRE 1 L’OPTIMISATION
Advertisements

Introduction Modélisation Utilisation dun ensemble de relations mathématiques pour refléter le plus adéquatement possible une situation réelle Compromis.
Programmation linéaire
CHAPITRE 1 LES SYSTÈMES D' INÉQUATIONS
Les contraintes d’un problème
Chapitre 3: Les équations et les inéquations
Inéquations du premier degré à deux variables
La méthode de la droite baladeuse
COURS 14 La recherche de la solution optimale. Une solution optimale est un couple de l’ensemble-solution qui permet d’atteindre un objectif d’optimisation.
MAXIMISER les RESULTATS
Chapitre I Modélisation optimisation I- Optimisation de fonctions d’une seule variable 1 Introduction En gestion, on est souvent confronté à des situations.
CHAPITRE 1: LES FONCTIONS.
Le marketing : Cours d’introduction
MODULE 1 L’OPTIMISATION
Thème: Les fonctions Séquence 4 : Variations d’une fonction
Séance 2 Thème 1: Le processus décisionnel – perspective à court terme (partie 2) 2-1.
- 5 - Optimisation linéaire et non-linéaire
Le contexte La mission Les ressources
Exercice sur la tarification au coût marginal
Programme linéaire - solution graphique
L’ESPRIT DU NOUVEAU PROGRAMME. SERIE SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION 1 Document élaboré dans le cadre du cercle de réflexion académique.
Auteur : Patrice LEPISSIER Calcul du Nombre de Vendeurs  Formule de calcul Formule de calcul  Visites clients Visites clients  Visites vendeur Visites.
Le premier jour de laboratoire pour les CAP 1 ère année Objectif : présentation des laboratoires et des règles d’hygiène et sécurité Laboratoires concernés.
1. Introduction.
Résolutions et réponses
Domaine: Relations R.A.:
Mini-Entreprise Préparation de l’Assemblée Générale.
Les inégalités et les inéquations
La communication technique
Activités mentales rapides
III Résolution graphique d’équations et inéquations
© Hachette Livre 2016, Mathématiques Cycle 4, collection Kiwi
Représentation du réel
Règle et Compas.
Plans d’experiences : plans de melanges
Calcul littéral 2.
EST-CE QUE TU SAIS JOUER UN INSTRUMENT DE MUSIQUE
Analyse de l’offre – Surplus du producteur
ECS - Le choix du producteur (en CPP)
PROGRAMMATION INFORMATIQUE D’INGÉNIERIE II
Un seul jeu Une seule règle Autant de pistes pédagogiques que d’élèves
1. Introduction.
CALCUL MENTAL AU CYCLE 3 .
ACP Analyse en Composantes Principales
Exercice 4 : Soit la fonction f définie sur un ensemble Df
Représentation du réel Dessin industriel. Les différents dessins techniques Dessin de définition.
OPTIMISATION 1ère année ingénieurs
 Polygone de contraintes
 Polygone de contraintes
Brief pour le design du site Anders Hjorth, 2003
Présentation de l’outil
Chapitre 1 Formulation d’un programme linéaire (PL) Georges Abboudeh BUST 347.
PRÉPARATION AU TEST p.63 #5 SOMMETS
CALCUL MENTAL SÉRIE 29.
CSI 3505 / Automne 2005: Conception et Analyse des Algorithmes I.
Exercice 5 : Soient les courbes des fonctions définies sur R par f(x) = 8x² - 8x – 10 et g(x) = 2x² - 8x °) Déterminez les points d’intersections.
1- Utiliser le vocabulaire géométrique Écris le nom :
GESTION DE LA PRODUCTION Réalisé par : EL MAROUSSI Mohammed DRIOUCHI Mohammed Abdeljabbar WAKENNOU Salah CRMEF Grand Casablanca Cycle de préparation à.
CALCUL MENTAL SÉRIE 25.
> > < < Inéquations I) Deux règles fondamentales
Chapitre I Modélisation optimisation
1- Utiliser le vocabulaire géométrique Écris le nom :
En fonction de l’analyse précédente,
Connaître les tables de multiplication de 0 à 5
1 fois
Comment se forment les prix sur un marché ?
Connaître les tables de multiplication de 0 à 7
1 fois
2 x 25 = 6 x 25 = 7 x 25 = 10 x 25 = 40 x 25 = 30 x 25 = Combien de fois 25 dans 50? Combien de fois 25 dans 125? Combien de fois 75 dans 150? Combien.
Transcription de la présentation:

L’OPTIMISATION

Mathématiques SN - OPTIMISATION - Rappel sur les inéquations A) Traduction Exemple # 1 : À chaque année, Sébastien joue au moins 5 parties de hockey de plus que de parties de football. À chaque année, Sébastien joue au moins 5 parties de hockey de plus que de parties de football. Variables x : Nombre de parties de hockey y : Nombre de parties de football Inéquation x ≥ y + 5

Exemple # 2 : À chaque année, Sébastien joue au plus le double de parties de hockey que de parties de football. À chaque année, Sébastien joue au plus le double de parties de hockey que de parties de football. Variables x : Nombre de parties de hockey y : Nombre de parties de football Inéquation x ≤ 2y Exemple # 3 : Chez HMV, je dispose de 150 $ pour acheter des CD de musique à 10 $ chacun et des DVD de film à 18 $ chacun. Chez HMV, je dispose de 150 $ pour acheter des CD de musique à 10 $ chacun et des DVD de film à 18 $ chacun. Variables x : Nombre de CD de musique y : Nombre de DVD de film Inéquation 10x + 18y ≤ 150

- OPTIMISATION - Rappel sur les inéquations B) Représentation graphique Exemple # 1 : Représenter graphiquement -2y  4x + 6 .

Donc le point (-2, -7) fait partie de l’ensemble-solutions. Exemple # 1 : Représenter graphiquement l’ensemble-solutions de -2y ≥ 4x + 6 . y  -2x – 3 Pour vérifier de quel côté de la droite doit-on hachurer, prenons un point quelconque et vérifions-le dans l’inéquation. 1 Avec le point (-2, -7) : y = -2x – 3 y  -2x – 3 -7  -2(-2) – 3 -7  4 – 3 -7  1 VRAI Ensemble-solutions de y  -2x – 3 Donc le point (-2, -7) fait partie de l’ensemble-solutions. (-2, -7)

Donc le point (4, 3) ne fait pas partie de l’ensemble-solutions. Exemple # 2 : Représenter graphiquement l’ensemble-solutions de y  x + 3 . Pour vérifier de quel côté de la droite doit-on hachurer, prenons un point quelconque et vérifions-le dans l’inéquation. 1 Ensemble-solutions de y  x + 3 Avec le point (4, 3) : y  x + 3 (4, 3) 3  4 + 3 3  7 FAUX y = x + 3 Donc le point (4, 3) ne fait pas partie de l’ensemble-solutions.

- OPTIMISATION - Rappel sur les inéquations B) Représentation graphique En RÉSUMÉ…  ou  ----------> Droite frontière pointillée  ou  ----------> Droite frontière pleine y  ou y  ----------> Ensemble-solutions au-dessus de la droite frontière y  ou y  ----------> Ensemble-solutions en-dessous de la droite frontière

- OPTIMISATION - Polygone de contraintes  Variables  Contraintes Exemple # 1 : Dans un orchestre, il y a des instruments à cordes et à vent. Il y a au moins 2 fois plus d’instruments à cordes que d’instruments à vent. De plus, il y a au plus 30 musiciens. Dans un orchestre, il y a des instruments à cordes et à vent. Il y a au moins 2 fois plus d’instruments à cordes que d’instruments à vent. De plus, il y a au plus 30 musiciens. Tracer le polygone de contraintes de cette situation.  Variables x : Nombre d’instruments à cordes y : Nombre d’instruments à vent  Contraintes x ≥ 2y x + y ≤ 30 x ≥ 0 Contraintes de non-négativité y ≥ 0

 Polygone de contraintes  Variables x : Nombre d’instruments à cordes y : Nombre d’instruments à vent  Contraintes x ≥ 2y x + y ≤ 30  Polygone de contraintes x ≥ 0 y ≥ 0 5  Isoler y x 2 x 2 y ≤ y ≤ y ≤ 30 – x y ≤ 30 – x x ≥ 0 x ≥ 0 y ≥ 0 y ≥ 0

 Polygone de contraintes Exemple # 2 : Un pâtissier prépare 2 types de gâteaux : au chocolat et aux carottes. Disposant d’un maximum de 18 œufs, il a besoin de 2 œufs pour le gâteau aux carottes et de 1 œuf pour celui au chocolat. Il doit faire au moins 12 gâteaux, dont au moins 7 au chocolat et au moins 2 aux carottes. Trace le polygone de contraintes de cette situation. Un pâtissier prépare 2 types de gâteaux : au chocolat et aux carottes. Disposant d’un maximum de 18 œufs, il a besoin de 2 œufs pour le gâteau aux carottes et de 1 œuf pour celui au chocolat. Il doit faire au moins 12 gâteaux, dont au moins 7 au chocolat et au moins 2 aux carottes. Trace le polygone de contraintes de cette situation.  Variables x : Nombre de gâteaux au chocolat y : Nombre de gâteaux aux carottes  Contraintes  Isoler y  Polygone de contraintes x 2 x 2 x + 2y ≤ 18 y ≤ 9 – y ≤ 9 – 1 2 x + y ≥ 12 x ≥ 7 y ≥ 12 – x y ≥ 12 – x y ≥ 2 x ≥ 7 x ≥ 7 x ≥ 0 y ≥ 2 y ≥ 2 y ≥ 0 x ≥ 0 x ≥ 0 y ≥ 0 y ≥ 0

Mathématiques SN - OPTIMISATION - Fonction à optimiser Exemple : Chaque semaine, une compagnie fabrique au moins 20 tables et 80 chaises. De plus, elle fabrique au moins 4 fois plus de chaises que de tables et peut produire un maximum de 200 chaises et tables au total. La compagnie fait un profit de 15 $ par chaise et de 25 $ par table. Combien de chaises et de tables la compagnie doit-elle produire pour maximiser ses profits ? Chaque semaine, une compagnie fabrique au moins 20 tables et 80 chaises. De plus, elle fabrique au moins 4 fois plus de chaises que de tables et peut produire un maximum de 200 chaises et tables au total. La compagnie fait un profit de 15 $ par chaise et de 25 $ par table. Combien de chaises et de tables la compagnie doit-elle produire pour maximiser ses profits ?  Variables  Fonction à optimiser x : Nombre de chaises fabriquées P = 15x + 25y Règle qui traduit le but visé par une fonction. But : maximiser y : Nombre de tables fabriquées

 Polygone de contraintes Exemple : Chaque semaine, une compagnie fabrique au moins 20 tables et 80 chaises. De plus, elle fabrique au moins 4 fois plus de chaises que de tables et peut produire un maximum de 200 chaises et tables au total. La compagnie fait un profit de 15 $ par chaise et de 25 $ par table. Combien de chaises et de tables la compagnie doit-elle produire pour maximiser ses profits ? Chaque semaine, une compagnie fabrique au moins 20 tables et 80 chaises. De plus, elle fabrique au moins 4 fois plus de chaises que de tables et peut produire un maximum de 200 chaises et tables au total. La compagnie fait un profit de 15 $ par chaise et de 25 $ par table. Combien de chaises et de tables la compagnie doit-elle produire pour maximiser ses profits ?  Variables  Fonction à optimiser x : Nombre de chaises fabriquées P = 15x + 25y y : Nombre de tables fabriquées But : maximiser  Contraintes  Isoler y  Polygone de contraintes y ≥ 20 y ≥ 20 y ≥ 20 20 x ≥ 80 x ≥ 80 x ≥ 80 x 4 x 4 x ≥ 4y y ≤ y ≤ x + y ≤ 200 x ≥ 0 y ≤ 200 – x y ≤ 200 – x y ≥ 0 x ≥ 0 x ≥ 0 y ≥ 0 y ≥ 0

Mathématiques SN - OPTIMISATION - Recherche de la solution optimale  Polygone de contraintes  Coordonnées des sommets 20 A : y = 20 A (80, 20) x = 80 B : y = 200 – x (1) (1) = (2) : (3) dans (1) : y = x 4 (2) 200 – x = x 4 y = 200 – 160 y = 40 200 = 5x 4 B B (160, 40) A C 160 = x (3) C : y = 20 (1) (1) = (2) : y = 200 – x (2) 200 – x = 20 C (180, 20) - x = - 180 x = 180

 Tableau-solutions  Solution Sommets P = 15x + 25y Profits 1700 $ B (160, 40) P = 15(160) + 25(40) 3400 $ Maximum C (180, 20) P = 15(180) + 25(20) 3200 $  Solution Pour réaliser un profit maximal, la compagnie doit fabriquer 160 chaises et 40 tables.

Mathématiques SN - OPTIMISATION - Stucture d’un problème d’optimisation complet  Variables  Polygone de contraintes  Fonction à optimiser  Coordonnées des sommets  Contraintes  Tableau-solutions  Isoler y  Solution

 Variables  Fonction à optimiser Exemple : Une entreprise confectionne 2 produits différents : des foulards et des chandails. Un foulard demande 8 heures pour la préparation des modèles et 4 heures pour l’impression. Quant aux chandails, il faut 2 heures pour concevoir les modèles et 15 minutes pour l’impression. Chaque semaine, il faut fabriquer de 20 à 80 foulards et de 100 à 250 chandails. Il y a 30 personnes qui travaillent 40 heures par semaine : 22 personnes pour les modèles et 8 personnes pour l’impression. L’entreprise fait des profits de 20 $ par foulard et de 4 $ par chandail. Combien d’articles de chaque sorte la compagnie doit-elle vendre pour maximiser ses profits ? Une entreprise confectionne 2 produits différents : des foulards et des chandails. Un foulard demande 8 heures pour la préparation des modèles et 4 heures pour l’impression. Quant aux chandails, il faut 2 heures pour concevoir les modèles et 15 minutes pour l’impression. Chaque semaine, il faut fabriquer de 20 à 80 foulards et de 100 à 250 chandails. Il y a 30 personnes qui travaillent 40 heures par semaine : 22 personnes pour les modèles et 8 personnes pour l’impression. L’entreprise fait des profits de 20 $ par foulard et de 4 $ par chandail. Combien d’articles de chaque sorte la compagnie doit-elle vendre pour maximiser ses profits ?  Variables x : Nombre de foulards produits par semaine y : Nombre de chandails produits par semaine  Fonction à optimiser P = 20x + 4y But : maximiser

 Contraintes  Isoler y Exemple : Une entreprise confectionne 2 produits différents : des foulards et des chandails. Un foulard demande 8 heures pour la préparation des modèles et 4 heures pour l’impression. Quant aux chandails, il faut 2 heures pour concevoir les modèles et 15 minutes pour l’impression. Chaque semaine, il faut fabriquer de 20 à 80 foulards et de 100 à 250 chandails. Il y a 30 personnes qui travaillent 40 heures par semaine : 22 personnes pour les modèles et 8 personnes pour l’impression. L’entreprise fait des profits de 20 $ par foulard et de 4 $ par chandail. Combien d’articles de chaque sorte la compagnie doit-elle vendre pour maximiser ses profits ?  Contraintes  Isoler y x ≥ 20 x ≥ 20 x ≤ 80 x ≤ 80 22 personnes x 40 heures = 880 heures y ≥ 100 y ≥ 100 y ≤ 250 y ≤ 250 8x + 2y ≤ 880 y ≤ 440 – 4x 8 personnes x 40 heures = 320 heures 4x + 0,25y ≤ 320 y ≤ 1280 – 16x x ≥ 0 x ≥ 0 y ≥ 0 y ≥ 0

 Polygone de contraintes  Isoler y y ≥ 100 y ≤ 250 x ≥ 0 y ≥ 0 x ≥ 20 x ≤ 80 y ≤ 440 – 4x y ≤ 1280 – 16x  Polygone de contraintes 100 10  Isoler y x ≥ 20 x ≤ 80 y ≥ 100 y ≤ 250 y ≤ 440 – 4x y ≤ 1280 – 16x x ≥ 0 y ≥ 0

 Coordonnées des sommets  Polygone de contraintes 100 10  Polygone de contraintes A : x = 20 A (20, 250) y = 250 B : y = 250 (1) (1) = (2) : y = 440 – 4x (2) 250 = 440 – 4x 47,5 = x B (47,5 , 250) A B C C : y = 440 – 4x (1) (1) = (2) : E D y = 1280 – 16x (2) 440 – 4x = 1280 – 16x 12x = 840 x = 70 (3) C (70, 160) (3) dans (1) : y = 440 – 4(70) y = 160 D : y = 1280 – 16x (1) (1) = (2) : y = 100 (2) 1280 – 16x = 100 x = 73,75 D (73,75 , 100) E : y = 100 E (20, 100) x = 20

 Tableau-solutions  Solution Sommets P = 20x + 4y Profits 1400 $ B (47,5, 250) P = 20(47,5) + 4(250) 1950 $ C (70, 160) P = 20(70) + 4(160) 2040 $ Maximum D (73,75, 100) P = 20(73,75) + 4(100) 1875 $ E (20, 100) P = 20(20) + 4(100) 800 $  Solution Pour réaliser un profit maximal, la compagnie doit vendre 70 foulards et 160 chandails.