The most incomprehensible thing about the world

Slides:



Advertisements
Présentations similaires
Mais vous comprenez qu’il s’agit d’une « tromperie ».
Advertisements

Le Nom L’adjectif Le verbe Objectif: Orthogram
ORTHOGRAM PM 3 ou 4 Ecrire: « a » ou « à » Référentiel page 6
[number 1-100] There is no rule to the way to remember the names for the numbers 1 to 10 in French so we recommend that you simply practice!
Licence pro MPCQ : Cours
Additions soustractions
Distance inter-locuteur
1 Plus loin dans lutilisation de Windows Vista ©Yves Roger Cornil - 2 août
11 Welcome to Québec City! Name of your Group Tuesday, November 17, 2009.
International Telecommunication Union Accra, Ghana, June 2009 Relationship between contributions submitted as input by the African region to WTSA-08,
Les numéros 70 –
Les numéros
Les identités remarquables
Le, la, les words Possessive Adjectives MINE!!. 2 My in french is mon, ma,mes... Le word/ begins with a vowel: Mon La word: Ma Les word: Mes.
Introduction à la logique
LES TRIANGLES 1. Définitions 2. Constructions 3. Propriétés.
Minimisation Techniques 1 Assimilation Algorithms: Minimisation Techniques Yannick Trémolet ECMWF Data Assimilation Training Course March 2006.
What is todays date and when is your birthday Ask someone what star sign they are and answer Say and ask for the time Say what you do for your birthday.
Correspondances en Onco-Urologie - Vol. III - n° 3 – juillet-août-septembre VESSIE Daprès James ND et al., N Engl J Med 2012;366:16:
Révision (p. 130, texte) Nombres (1-100).
La législation formation, les aides des pouvoirs publics
1 7 Langues niveaux débutant à avancé. 2 Allemand.
Reading an analog clock
Français I Leçon 2B Une semaine au lycée Au Debut #7 (for the dates of November 5 and 6) Please Translate the Following: 1. I love the math course. (Adorer.
SERABEC Simulation sauvetage aérien avec un Hercule C130. Départ de St-Honoré le 4 octobre Durée de vol 3 heures. Premier vol en Hercule pour les.
CONCOURS DE CONAISSANCE 4 Français I Mars Il ________ la géographie (to learn).
La méthodologie………………………………………………………….. p3 Les résultats
Bayesian Inference Algorithms Revisited
1 of 46 2 of 46 UPDATE UPDATE ON TV ANTENNAS SINCE LAST BOARD MEETING SINCE LAST BOARD MEETING HELD ON FEBRUARY 25, 2010, YOUR BOARD HAS MADE MORE PROGRESS.
Jack Jedwab Association détudes canadiennes Le 27 septembre 2008 Sondage post-Olympique.
L’Heure Telling Time.
Le soccer & les turbans Sondage mené par lAssociation détudes canadiennes 14 juin 2013.
1 of of 40 UPDATE UPDATE ON TV ANTENNAS SINCE LAST BOARD MEETING SINCE LAST BOARD MEETING HELD ON FEBRUARY 25, 2010, YOUR BOARD HAS MADE MORE PROGRESS.
Présentation générale
1 Guide de lenseignant-concepteur Vincent Riff 27 mai 2003.
Le drapeau canadien comme symbole de fierté nationale : une question de valeurs partagées Jack Jedwab Association détudes canadiennes 28 novembre 2012.
Le Concours de Conaissance Francais I novembre 2012.
Si le Diaporama ne s'ouvre pas en plein écran Faites F5 sur votre clavier.
Titre : Implémentation des éléments finis sous Matlab
Les nombres.
Les quartiers Villeray – La Petite-Patrie et les voisinages
LES NOMBRES PREMIERS ET COMPOSÉS
CLL11 : chlorambucil (CLB) versus CLB + rituximab (R)
Logiciel gratuit à télécharger à cette adresse :
Les chiffres & les nombres
Laboratoire de Bioinformatique des Génomes et des Réseaux Université Libre de Bruxelles, Belgique Introduction Statistics.
RACINES CARREES Définition Développer avec la distributivité Produit 1
DUMP GAUCHE INTERFERENCES AVEC BOITIERS IFS D.G. – Le – 1/56.
Année universitaire Réalisé par: Dr. Aymen Ayari Cours Réseaux étendus LATRI 3 1.
Titre : Implémentation des éléments finis en Matlab
Jean-Marc Léger Président Léger Marketing Léger Marketing Les élections présidentielles américaines.
MAGIE Réalisé par Mons. RITTER J-P Le 24 octobre 2004.
1 INETOP
Influenza: le modèle épidémiologique belge 29 Mai 2009
Les Nombres 0 – 100 en français.
Aire d’une figure par encadrement
Copyright 2011 – Les Chiffres Copyright 2011 –
P.A. MARQUES S.A.S Z.I. de la Moussière F DROUE Tél.: + 33 (0) Fax + 33 (0)
Les fondements constitutionnels
MAGIE Réalisé par Mons. RITTER J-P Le 24 octobre 2004.
Traitement de différentes préoccupations Le 28 octobre et 4 novembre 2010.
1/65 微距摄影 美丽的微距摄影 Encore une belle leçon de Macrophotographies venant du Soleil Levant Louis.
Leçons To attend Assister à 2. To fish.
Certains droits réservés pour plus d’infos, cliquer sur l’icône.
Nom:____________ Prénom: ___________
Quelle heure est-il? What time is it ?.
Slide 1 of 39 Waterside Village Fête ses 20 ans.
Annexe Résultats provinciaux comparés à la moyenne canadienne
La formation des maîtres et la manifestation de la compétence professionnelle à intégrer les technologies de l'information et des communications (TIC)
Transcription de la présentation:

The most incomprehensible thing about the world is that it is comprehensible Albert Einstein

Bayesian Cognition Julien Diard Pierre Bessière Probabilistic models of action, perception, inference, decision and learning Julien Diard CNRS - Laboratoire de Psychologie et NeuroCognition Pierre Bessière CNRS - Laboratoire de Physiologie de la Perception et de l’Action

To get more info http://diard.wordpress.com Julien.Diard@upmf-grenoble.fr Bayesian-Programming.org ftp://ftp-serv.inrialpes.fr/pub/emotion/bayesian-programming/Cours Pierre.Bessiere@college-de-france.fr

Plan / planning Bessière c1 15/11 Diard c2 29/11, c3 13/12, c4 03/01 Incomplétude, incertitude, Programme Bayésien, inférence Bayésienne Diard c2 29/11, c3 13/12, c4 03/01 Modèles Bayésiens en robotique et sciences cognitives Diard c5 10/01 Sélection de modèles, machine learning, distinguabilité de modèles Bessière c6 17/01 Compléments : algorithmes d’inférence, maximum d’entropie

Daniel J. Simons & Christopher Chabris Perception test Daniel J. Simons & Christopher Chabris Harvard University

http://nivea.psycho.univ-paris5.fr/demos/BONETO.MOV http://www.youtube.com/watch?v=ubNF9QNEQLA http://viscog.beckman.illinois.edu/flashmovie/12.php

Probability Theory as an alternative to Logic The actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore the true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind . James Clerk Maxwell

Incompleteness and Uncertainty A very small cause which escapes our notice determines a considerable effect that we cannot fail to see, and then we say that the effect is due to chance. H. Poincaré

Shape from Image

Shape from Motion DROULEZ COLAS PLOS 6 EXPE PSYCHO Colas, F., Droulez, J., Wexler, M. & Bessiere, P. (2008) Unified probabilistic model of perception of three-dimensional structure from optic flow; in Biological Cybernetics,in press Colas, F. (2006) Perception des objets en mouvement : Composition bayésienne du flux optique et du mouvement de l’observateur, Thèse INPG

Illusions: McGurkeffect Courtesy of Masso Arnt, Associate Professor, University of Oslo Cathiard, M.-A., Schwartz, J.-L. & Abry, C. (2001). Asking a naive question to the McGurk effect : why does audio [b] give more [d] percepts with usual [g] than with visual [d] ? In Proceedings of the /Auditory Visual Speech processing, AVSP'2001/, Aalborg, Copenhague, 138-142.

Credit card fraud detection

Beam-in-the-Bin experiment (Set-up)

Beam-in-the-Bin experiment (Results)

Beam-in-the-Bin experiment (Results)

Beam-in-the-Bin experiment (Results)

Logical Paradigm Incompleteness

Bayesian Paradigm =P(M | SDC) P(MS | DC)

Principle Incompleteness Uncertainty Decision Preliminary Knowledge + Experimental Data = Probabilistic Representation Bayesian Learning Uncertainty Bayesian Inference Decision

Thesis Probabilistic inference and learning theory, considered as a model of reasoning, is a new paradigm (an alternative to logic) to explain and understand perception, inference, decision, learning and action. La théorie des probabilités n'est rien d'autre que le sens commun fait calcul. Marquis Pierre-Simon de Laplace The actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore the true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind . James Clerk Maxwell By inference we mean simply: deductive reasoning whenever enough information is at hand to permit it; inductive or probabilistic reasoning when - as is almost invariably the case in real problems - all the necessary information is not available. Thus the topic of « Probability as Logic » is the optimal processing of uncertain and incomplete knowledge . E.T. Jaynes Subjectivist vs Objectivist epistemology of probabilities ?

A water treatment unit (1) Complete simulation Incomplete model Observe the consequences of this incompleteness 11 values, 0 the worst

A water treatment unit (2)

A water treatment unit (3)

A water treatment unit (4)

A water treatment unit (5)

Uncertainty on O due to inaccuracy on S

Uncertainty due to the hidden variable H

Not taking into account the effect of hidden variables may lead to wrong decision (1) C=0,1 or 2 leads to optimal value O*=6 With H the “reality” is somewhat more complex The adequate choice of C is more complex but also more informed

Not taking into account the effect of hidden variables may lead to wrong decision (2) C=0,1 or 2 leads to optimal value O*=6 With H the “reality” is somewhat more complex The adequate choice of C is more complex but also more informed

Principle Incompleteness Uncertainty Decision Preliminary Knowledge + Experimental Data = Probabilistic Representation Bayesian Learning Uncertainty Bayesian Inference Decision

Basic Concepts Far better an approximate answer to the right question which is often vague, than an exact answer to the wrong question which can always be made precise. John W. Tuckey

Bayesian Spam Detection Classify texts in 2 categories “spam” or “nonspam” Only available information: a set of words Adapt to the user and learn from experience

Variable

Probability

Normalization postulate

Conditional probability

Variable conjunction

Conjunction postulate

Syllogisms Logical Syllogisms: Probabilistic Syllogisms: Modus Ponens: Modus Tollens: Probabilistic Syllogisms:

Marginalization rule

Joint distribution and questions (1)

Joint distribution and questions (2) 3^N+1-2^N+1

Joint distribution and questions (3) 3^N+1-2^N+1

Decomposition

Bayesian Network

Parametric Forms (1)

Parametric Forms (2)

Identification

Specification = Variables + Decomposition + Parametric Forms Variables: the choice of relevant variables for the problem Decomposition: the expression of the joint probability distribution as the product of simpler distribution Parametric Forms: the choice of the mathematical functions of each of these distributions

Description = Specification + Identification

Questions (1)

Questions (2)

Questions (3)

Question (4)

Bayesian Program = Description + Question Specification Identification Description Question Program Variables Parametrical Forms or Recursive Question Decomposition Preliminary Knowledge p Experimental Data d Utilization

Bayesian Program = Description + Question

Results SpamSieve http://c-command.com/spamsieve/

Theoretical Basis Content: Definitions and notations Inference rules Bayesian program Model specification Model identification Model utilization $$$citation$$$

Logical Proposition Logical Proposition are denoted by lowercase name: Usual logical operators:

Probability of Logical Proposition We assume that to assign a probability to a given proposition a, it is necessary to have at least some preliminary knowledge, summed up by a proposition p. Of course, we will be interested in reasoning on the probabilities of the conjunctions, disjunctions and negations of propositions, denoted, respectively, by: We will also be interested in the probability of proposition a conditioned by both the preliminary knowledge p and some other proposition b:

Normalization and Conjunction Postulates Bayes rule Cox Theorem Resolution Principle Why don't you take the disjunction rule as an axiom?

Discrete Variable Variable are denoted by name starting with one uppercase letter: By definition a discrete variable is a set of propositions Mutually exclusive: Exhaustive: at least one is true The cardinal of X is denoted:

Variable Conjunction Not a variable

Conjunction rule

Normalization rule Proof

Marginalization rule Proof

Contraction/Expansion rule

Rules

Description The purpose of a description is to specify an effective method to compute a joint distribution on a set of variables: Given some preliminary knowledge p and a set of experimental data d. This joint distribution is denoted as:

Decomposition Partion in K subsets: Conjunction rule: Conditional independance: Decomposition:

Parametrical Forms or Recursive Questions

Question Given a description, a question is obtained by partitionning the set of variables into 3 subsets: the searched variables, the known variables and the free variables. We define the Search, Known and Free as the conjunctions of the variables belonging to these three sets. We define the corresponding question as the distribution:

Inference

2 optimisation problems

API and Inference Engine main () { //Variables plFloat read_time; plIntegerType id_type(0,1); plFloat times[5] = {1,2,3,5,10}; plSparseType time_type(5,times); plSymbol id("id",id_type); plSymbol time("time",time_type); //Parametrical forms //Construction of P(id) plProbValue id_dist[2] = {0.75,0.25}; plProbTable P_id(id,id_dist); //Construction of P(time | id = john) plProbValue t_john_dist[5] = {20,30,10,5,2}; plProbTable P_t_john(time,t_john_dist); //Construction of P(time | id = bill) plProbValue t_bill_dist[5] = {2,6,10,40,20}; plProbTable P_t_bill(time,t_bill_dist); //Construction de P(time | id) plKernelTable Pt_id(time,id); plValues t_and_id(time^id); t_and_id[id] = 0; Pt_id.push(P_t_john,t_and_id); t_and_id[id] = 1; Pt_id.push(P_t_bill,t_and_id); //Decomposition // P(time id) = P(id) P(time | id) plJointDistribution jd(time^id,P_id*Pt_id); ProBT® ProBAYES.com Bayesian-Programming.org Specification Variables Decomposition Description Parametric Forms Bayesian Program Identification Learning from instances //Question //Getting the question P(id | time) plCndKernel Pid_t; jd.ask(Pid_t,id,time); //Read a time from the key board cout<<"P(id,time)= "<<Pid_t<<"\n"; cout<<"Time? : "; cin>>read_time; //Getting P(id | time = read_time) plKernel Pid_readTime; Question