Produit vectoriel Montage préparé par : André Ross

Slides:



Advertisements
Présentations similaires
CONSTRUCTION DE TRIANGLES
Advertisements

Construction des 3 hauteurs
LES TRIANGLES 1. Définitions 2. Constructions 3. Propriétés.
Composée de deux symétries centrales
Vecteurs algébriques Montage préparé par : André Ross
RECIT d’une EXPERIENCE Françoise Barachet LYCEE MONTDORY de THIERS
Produit vectoriel Montage préparé par : André Ross
Calcul de volume méthode des tranches
Vecteurs algébriques Montage préparé par : André Ross
Produit de Matrices Montage préparé par : André Ross
Évolution à taux constant
Angles et distances dans R2
Produit scalaire Montage préparé par : André Ross
Géométrie vectorielle
Moments de forces Montage préparé par : André Ross
PROBLEME (Bordeaux 99) (12 points)
L’aire, limite d’une somme
Parallélogrammes Remarque 1) Parallélogrammes
Transformations Montage préparé par : S André Ross
Chapitre 2 Les vecteurs 2.0 Introduction
Algèbre vectorielle Montage préparé par : André Ross
Vecteurs géométriques
Fonction puissance Montage préparé par : André Ross
1.2 COMPOSANTES DES VECTEURS
Modèles de Leontieff Montage préparé par : André Ross
Chapitre 1 NOMBRES RELATIFS 1) Multiplication 2) Division 3) Équation.
Vecteurs géométriques et forces
Le point le plus près Montage préparé par : André Ross
Lignes trigonométriques.
MODULE 11 Mathématiques SN Les VECTEURS
Produit mixte Montage préparé par : André Ross
2.1 LONGUEURS ET DISTANCES Cours 4 1.
Le plan dans R3 Intersections, angles et distances
La droite dans R2 Montage préparé par : André Ross
Espaces vectoriels Montage préparé par : S André Ross
Combinaisons linéaires de vecteurs géométriques
Vecteurs géométriques
Droites et plans, positions relatives
Sommations et notation sigma
Vers la dimension 3. La géométrie dans l'espace ne fait qu'étendre les concepts qui vous sont familiers en dimension 2 à la dimension 3. Le plus difficile.
1.1 LES VECTEURS GÉOMÉTRIQUES
3.2 PRODUIT VECTORIEL Cours 7.
Mathématiques SN Les VECTEURS Réalisé par : Sébastien Lachance.
Factorisation de trinômes
Simple distributivité
Calcul d’aires à l’aide des limites
PYTHAGORE ! VOUS AVEZ DIT THEOREME DE PYTHAGORE
Trigonométrie Résolution de triangles. Applications.
Résoudre une équation du second degré.
Géométrie analytique Distance entre deux points.
Résoudre une équation du 1er degré à une inconnue
2.2 PRODUIT SCALAIRE ET CALCUL D’ANGLES
Taux ponctuel, valeur limite
La droite dans R3 Montage préparé par : André Ross
Déterminants Montage préparé par : André Ross
Primitives Montage préparé par : André Ross
Transformations linéaires et sous-espaces associés
Sous-espaces vectoriels engendrés
Produit Scalaire.
Produit scalaire Montage préparé par : André Ross
Changement de variable
La droite dans R3 Intersections, angles et distances
Nombres complexes Montage préparé par : André Ross
Quelques exemples d ’utilisation des coordonnées au collège
Produit scalaire dans le plan
Trigonométrie Résolution de triangles Applications.
CHAPITRE III Calcul vectoriel
OUTILS MATHEMATIQUES POUR LES SII
Translations et vecteurs.
Produit vectoriel Montage préparé par : André Ross
Transcription de la présentation:

Produit vectoriel Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon

Mise en situation Le produit vectoriel de deux vecteurs est un vecteur. Cela signifie que pour définir le produit, il faut donner la direction, le sens et le module du vecteur obtenu. Lorsque les vecteurs algébriques sont exprimés dans la base orthonormée usuelle, le produit vectoriel de deux vecteurs peut être obtenu par un calcul de déterminant. Nous verrons d’abord le produit vectoriel de deux vecteurs algébriques de R3 en cherchant à déterminer un vecteur perpendiculaire à deux vecteurs donnés. Nous généraliserons par la suite par l’interprétation géométrique de ce produit.

Produit vectoriel Définition Produit vectoriel de vecteurs géométriques Soit u et v deux vecteurs géométriques. Alors, le produit vectoriel u ´v donne un vecteur w tel que : • sa direction est perpendiculaire au plan défini par u et v; • son sens est obtenu en appliquant la règle de la main droite en tournant de u vers v; • sa longueur est égale au produit des modules des vecteurs u et v et du sinus de l’angle entre ces vecteurs.

Produit vectoriel Propriétés du produit vectoriel Pour tout vecteur u, v et w et pour tout scalaire p et q : 1. Anticommutativité u ´ v = –(v ´ u) 2. Associativité pour la multiplication par un scalaire (pu) ´(qv) = pq(u ´ v) 3. Distributivité sur l’addition vectorielle u ´ (v + w) = u ´ v + u ´ w (u + v) ´ w = u ´ w + v ´ w

Exemple Dans la figure ci-contre, les vecteurs géométriques e1, e2 et e3 forment une base. e1 ´u = 2 e2 Effectuer, en utilisant cette base, les produits vectoriels indiqués. Exprimer le vecteur obtenu en fonction des vecteurs de la base. a) e1 ´ u b) u ´ v a) Le produit vectoriel donne un vecteur perpendiculaire au plan défini par e1 et u. b) En exprimant les vecteurs u et v en fonction des vecteurs de la base, on obtient : S S Par la règle de la main droite, le sens du produit est le même que le vecteur e2. u = 2 e1 + 2 e3 et v = 2 e1 + e2 En utilisant les propriétés et le fait que sin 0° = 0 et sin 90° = 1, on obtient : De plus, e1 = 1, u = 22 + 22 = 8 = 2 2 et sin 45° = 2 u ´ v = (2 e1 + 2 e3) ´(2 e1 + e2 ) On a donc, e1 ´ u = 2. = 4 (e1 ´ e1) + 2 (e1´ e2) + 4 (e3´ e1) + 2 (e3´ e2) = 4 (0) + 2 (–e3) + 4 (–e2) + 2 (e1) Par conséquent, e1 ´ u = 2 e2. = 2 e1 – 4 e2 – 2 e3

Interprétation géométrique du module Dans le produit vectoriel, le module est égal au produit des modules et du sinus de l’angle entre ceux-ci. Théorème Aire du parallélogramme Soit u et v deux vecteurs de R3. Alors, le module du produit vectoriel u ´v donne l’aire du parallélogramme construit sur les vecteurs u et v.

Produit vectoriel nul S Considérons u et v, deux vecteurs géométriques non nuls tels que u ´ v = 0, Alors : u ´ v = 0 Û u ´ v = 0 Û u v sin q = 0 Û sin q = 0, car u ≠ 0 et v ≠ 0 Û q = 0° ou q = 180° Û u et v ont la même direction (ou sont colinéaires). S Théorème Produit vectoriel nul Soit u et v deux vecteurs non nuls. Alors, u ´ v = 0 si et seulement si les deux u et v ont la même direction (ou sont colinéaires).

Exemple Dans la figure ci-contre, les vecteurs géométriques e1, e2 et e3 forment une base orthonormée. Utiliser le produit vectoriel pour calculer l’aire du parallélogramme ABCD. Pour déterminer l’aire du parallélo-gramme, il faut calculer le module du produit vectoriel AB ´ AD. En exprimant ces vecteurs dans la base, on a : On a donc : AB ´ AD = 2 e1 + 2 e2 + 4 e3 AB = 2 e2 – e3 et AD = 2 e1 – e3 S S Le module est alors : Le produit vectoriel donne alors : AB ´AD AB ´ AD = (2 e2 – e3) ´(2 e1 – e3) = 22 + 22 + 42 = 24 ≈ 4,90 = 4 (e2´ e1) – 2 (e2´ e3) – 2 (e3 ´ e1) + (e3 ´ e3) Par conséquent, l’aire du parallélogramme est d’environ 4,90 unités d’aire. = 4 (e3) – 2 (–e1) – 2 (–e2) + 2 (0) = 2 e1 + 2 e2 + 4 e3

Produit vectoriel des vecteurs orthonormés Il nous reste à voir comment effectuer le produit vectoriel de vecteurs algébriques. Pour le déterminer, nous aurons besoin du produit des vecteurs de la base orthonormée. Considérons d’abord le produit i ´ j. Considérons maintenant le produit j ´ k. Considérons maintenant le produit k ´ i. Considérons maintenant le produit j ´ i. i j k 1 i j k 1 i j k 1 i j k 1 k ´i = j ´ i = j ´k = i ´j = = 0 i + 1 j k + 0 = 0 i + 0 j k – 1 = 1 i – 0 j k + 0 = 0 i – 0 j k + 1 S S S S On peut de la même façon, considérer les autres produits. La règle de la main droite permet toujours d’indiquer le sens du produit vectoriel. Plaçons la main droite pour qu’elle pointe dans le sens du vecteur à gauche du symbole d’opération et de telle sorte que l’on puisse fermer la main en tournant vers le vecteur qui est à droite du symbole d’opération. Le pouce indique alors le sens du produit vectoriel.

Produit vectoriel de vecteurs algébriques Soit u = ai + bj + ck et v = di + ej + fk, deux vecteurs de R3. Par les propriétés du produit vectoriel , on a : u ´v = (ai + bj + ck ) ´(di + ej + fk) = ad(i ´i) + ae(i ´j) + af(i ´k) + bd (j ´i) + be(j ´j) + bf(j ´k)+ cd (k ´i) + ce(k ´j) + cf(k ´k) S = (bf – ce)i – (af – dc)j + (ae – db)k Pour ne pas avoir à apprendre cette formule, on procède en disposant les composantes des vecteurs de la façon suivante : On développe selon la première ligne en alternant les signes : i b e j k i j c f k i a d j k j k i j k a b c d e f u ´v = b c e f a c d f a b d e = i – – j – + k – = i (bf – ce) – j (af – cd) + k (ae – bd) En pratique, on fait les calculs directement.

Exemple 9.3.1 Déterminer un vecteur w perpendiculaire aux vecteurs u = (3; –2; 5) et v = (2; 4; –3). i j k u ´v = 3 –2 5 = i (6 – 20) – j (–9 – 10) + k (12 + 4) 2 4 –3 = –14 i + 19 j + 16 k Le vecteur cherché est donc : w = (–14; 19; 16). S Remarque Les composantes du vecteur à gauche du symbole d’opération occupent la deuxième ligne et celles du vecteur à droite du symbole d’opération occupent la troisième ligne. En permutant ces deux lignes, on change le signe, donc le sens, du vecteur obtenu.

Exercice Déterminer un vecteur w perpendiculaire aux vecteurs u = (2; –3; –4) et v = (–3; 2; 2). Vérifier que le vecteur obtenu est bien perpendiculaire aux vecteurs donnés. i j k u ´v = 2 –3 –4 = i (–6 + 8) – j (4 – 12) + k (4 – 9) –3 2 2 = 2 i + 8 j – 5 k Le vecteur cherché est donc : w = (2; 8; –5). On peut vérifier la perpendicularité des vecteurs par le produit scalaire. S S u • w = (2; –3; –4) • (2; 8; –5) = 4 –24 + 20 = 0 v • w = (–3; 2; 2) • (2; 8; –5) = –6 + 16 – 10 = 0 Puisque les deux produits scalaires sont nuls, le vecteur obtenu est bien perpendiculaire aux deux vecteurs donnés.

Exemple 9.3.2 S S Effectuer le produit vectoriel u ´ v , sachant que : u = 2 i – 3 j + k et v = –5 i + 2 j + 3 k Calculer l’aire du parallélogramme construit sur ces vecteurs. Le produit vectoriel est donné par : i j k 2 –3 1 –5 3 u ´v = = (–9 – 2) i – (6 + 5) j + (4 – 15) k = –11 i – 11 j k –11 On sait que ce vecteur est perpendiculaire aux deux vecteurs donnés et que son module donne l’aire du parallélogramme construit sur ceux-ci. S S u ´ v = (–11)2 + (–11)2 + (–11)2 = 3 ´112 ≈ 19,05 Par conséquent, l’aire du parallélogramme est d’environ 19,05 unités d’aire.

Distances dans R3 Distance d’un point Q à une droite dont on connaît un vecteur directeur. On détermine un point R de la droite ainsi que le vecteur RQ. La distance cherchée est alors la hauteur du parallélogramme construit sur les vecteurs RQ et D. Le module du produit vectoriel donne l’aire de ce parallélogramme et on divise par la longueur de la base, soit le module du vecteur directeur. Distance d’un point Q à une droite dont on connaît deux points R et P. On procède de la même façon en considérant D = RP.

Exemple S S Trouver la distance du point Q(7; –2; 5) à la droite ∆ : x = 3 + 2t y = 6 – 3t z = –5 + 4t Le vecteur directeur de ∆ est : = (2; –3; 4)  D  En posant t = 0 dans l’équation de ∆, on obtient le point R(3; 6; –5). = (7;–2; 5) – (3; 6; –5 ) = (4; –8; 10). RQ On a alors le vecteur Le produit vectoriel donne : i j k 4 –8 10 2 –3 RQ ´D = + (–12 + 16) = (–32 + 30) i – (16 – 20) j k = –2 i + 4 j k S S La distance est alors donnée par : d(Q, ∆) = RQ  D  ´ D   = 6 29 ≈ 1,11 La distance du point au plan est donc d’environ 1,11 unités.

Distance d’un point à une droite de R3 Procédure pour trouver la distance d’un point Q à une droite dans R3 1. Déterminer le vecteur directeur de la droite. 2. Construire le vecteur allant d’un point R quelconque de la droite au point Q. 3. Calculer l’aire du parallélogramme construit sur ces deux vecteurs (module du produit vectoriel). 4. Diviser l’aire du parallélogramme par la longueur de sa base (module du vecteur directeur) pour en obtenir la hauteur qui est la distance cherchée. Remarque : Lorsque deux points de la droite sont connus, on peut déterminer un vecteur directeur en considérant le vecteur dont l’origine est un de ces points et dont l’extrémité est l’autre point.

Exercice S S Trouver la distance du point Q(5; 4; –7) à la droite ∆ : x = 8 – 5t y = 2 – 6t z = 3 + 7t Le vecteur directeur de ∆ est : = (–5; –6; 7)  D  En posant t = 0 dans l’équation de ∆, on obtient le point R(8; 2; 3). = (5; 4; –7) – (8; 2; 3) = (–3; 2; –10). RQ On a alors le vecteur Le produit vectoriel donne : i j k –3 2 –10 –5 –6 7 RQ ´D = + (18 + 10) = (14 – 60) i – (–21 – 50) j k = –46 i + 71 j k + 28 S S La distance est alors donnée par : d(Q, ∆) = RQ  D  ´ D   = 7 941 110 ≈ 757,14 La distance du point au plan est donc d’environ 757,14 unités.

Conclusion Le produit vectoriel de deux vecteurs est un vecteur perpendiculaire aux deux vecteurs dont on effectue le produit, dont le sens est donné par la règle de la main droite et dont le module est égal au produit des modules et du sinus de l’angle entre les vecteurs. Lorsque les vecteurs sont donnés dans la base orthonormée usuelle, on peut trouver ce vecteur, exprimé dans cette même base, en effectuant le calcul d’un déterminant. Le module du produit vectoriel de deux vecteurs donne l’aire du parallélogramme construit sur ceux-ci.

Lecture Mathématiques pour la chimie et la biologie, section 9.3, p. 270 à 273. Exercices Mathématiques pour la chimie et la biologie, section 9.4, p. 286.