La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Lignes trigonométriques.

Présentations similaires


Présentation au sujet: "Lignes trigonométriques."— Transcription de la présentation:

1 Lignes trigonométriques.
Soient dans un plan deux axes rectangulaires x’Ox et y’Oy. Considérons un angle orienté ^xOM = a Décrivons un cercle de centre O et de rayon OM=1 De M abaissons la perpendiculaire MQ sur yy’ y M Q a A P x x’ O y’

2 Lignes trigonométriques.
Par définition on appelle cosinus de l’angle a la mesure algébrique du segment OP quand on prend OM pour unité. On écrira cos a = OP Par définition on appelle sinus de l’angle a la mesure algébrique du segment OQ quand on prend OM pour unité. On écrira sin a = OQ y M Q a A P x x’ O y’

3 Lignes trigonométriques.
On appelle tangente de l’angle a le rapport de sinus au cosinus de cet angle. On écrira tg a = sin a / cos a = OQ/OP On appelle cotangente de l’angle a l’inverse de la tangente de cet angle. On écrira cotg a = cos a / sin a = OP/OQ y M Q a A P x x’ O y’

4 Signes des lignes trigonométriques.
a 0 – 90o 90o- 180o 180o- 270o 270o- 360o sin a + 0k1 + 1m0 - 0m-1 - -1k0 cos a tg a + 0k~ - -~k0 cotg a + ~m0 - 0m-~

5 Lignes trigonométriques d’angles remarquables.
sin a 1/2 1/ /2 cos a 1 tg a cotg a

6 Relation entre sinus et cosinus d’un angle
Relation entre sinus et cosinus d’un angle. Calcul de sinus et cosinus en fonction de tangente. Théorème. Pour un angle a quelconque les relations suivantes sont vraies: sin2 a + cos2 a = 1 cos a = sin a =

7 Application au triangle quelconque.
B Théorème. Dans un triangle quelconque on a a2 = b2 + c2 – 2bc cos A Preuve: a2 = b2 + c2 – 2bn Dans le Cas 1: n = c cos A, et Dans le Cas 2: n = - c cos (180o-A) alors n = - c cos A, et a2 = b2 + c2 + 2bn Alors dans les deux cas Cas 1 a c h C m n A H b Cas 2 B a h c n C A b m

8 Relations métriques dans un cercle.
Théorème. Toute perpendiculaire abaissée d’un point de la circonférence sur un diamètre est moyenne proportionnelle entre les deux segments qu’elle détermine sur ce diamètre. DA2 = DC * DB Théorème. Le carré d’une corde menée par une extrémité d’un diamètre égale le produit de sa projection sur ce diamètre, par le diamètre entier. AB2 = BD * AC A B C O D

9 Relations métriques dans un cercle.
Théorème. Étant donnés un cercle et deux droites concourantes en O, qui coupent le cercle respectivement en A, B et C, D, on a la relation: OA * OB = OC * OD B O D A O A C B D

10 Relations métriques dans un cercle.
Théorème de Ptolémée. Dans un quadrilatère inscrit, le produit des diagonales est égal à la somme des produits des côtés opposés. a*c + b*d = AC * BD Preuve: ABE ~ ACD et ADE ~ ACB, a/BE = AC/c, alors ac=AC*BE d/ED = AC/b, alors bd=AC*ED Donc a*c+b*d=AC(BE+ED)=AC*BD A b B a d E O b D c F C

11 Éléments de la géométrie analytique. Le plan cartésien.
Un plan cartésien est un plan formé de deux droites numériques perpendiculaires nommées axes. La droite numérique horizontale, ordonnée x’x s'appelle l'axe des abscisses ou l'axe des x. La droite numérique verticale , ordonnée y’y s'appelle l'axe des ordonnées ou l'axe des y Le point de rencontre des deux axes du plan cartésien se nomme le point d'origine O. Le plan cartésien se divise en quatre régions nommées quadrants. x’ x y’ y O Quadrant 2 Quadrant 1 Quadrant 3 Quadrant 4

12 Le plan cartésien. Le point.
Le point placé dans un plan est identifié par sa projection sur chacun des axes. On obtient deux résultats qui prennent les signes des quadrants que l'on appelle les coordonnées du point. Un point est représenté par un couple de nombres placés entre parenthèses: l'abscisse en premier, l'ordonnée en second. Le couple (x, y) désigne le point. x’ x y’ y O Q(x1,y1) P1(4,3) P2(4,3) P3(4,3)

13 La distance entre les points. Le milieu du segment.
La distance entre deux points A(xA,yA) et B(xB,yB) est donnée par la formule: Le milieu du segment déterminé par les points A(xA,yA) et B(xB,yB) est un point M donné par la formule: x’ x y’ y O P1(5,6) Q(1,-1.5) P2(-7,-3)

14 La ligne droite. La pente.
La pente d’une droite ordonnée est la tangente de l’angle formé par cette droite avec l'axe des abscisses La pente d’une droite ordonnée non verticale déterminée par deux points A(xA,yA) et B(xB,yB) (dans cette ordre) est donnée par la formule: x’ x y’ y O P1(5,6) P2(-7,-3) R(5,-3)

15 La ligne droite. La pente.
Les droites parallèles ont les pentes égales Les pentes m1 et m2 des droites perpendiculaires ont respectent la condition m1*m2=-1.

16 Équation de la ligne droite.
L’équation (l’inéquation) d’un objet géométrique détermine le lieu géométrique des points respectant cette L’équation (inéquation). L’équation d’une droite non verticale passant par deux points donnés A(xA,yA) et B(xB,yB) est donnée par la formule: x’ x y’ y O P1(5,6) P2(-7,-3)

17 Équation de la ligne droite.
L’équation x=c détermine une droite verticale ayant distance c à l’axe y. L’équation y=kx+b détermine une droite ayant pente k et coupant l’axe x au point (b,0). L’équation Ax+By+C=0 est une équation générale d’une droite. L’équation x/a+y/b=1 détermine une droite coupant les axes aux points (a,0) et (0,b).

18 Équation de la ligne droite.
L’équation x cos w + y sin w – p =1 est une équation normale d’une droite ayant une pente -1/cotg w et ayant distance p de l’origine. La distance d d’une droite dans la position normale x cos w + y sin w – p = 0 du point (x1,y1) est donné par l’équation d = x1 cos w + y2 sin w – p x’ x y’ y O p w

19 Équation paramétrique.
La forme paramétrique d’une courbe sur un plan est donnée par une paire d’équations: x = f(t) y = g(t) Les points de la courbe ont donc des coordonnées (f(t),g(t)), pour différents valeurs de t. L’équations paramétriques d’un segment aux extrémités A(xA,yA) et B(xB,yB) sont: x = (1-t)xA + txB y = (1-t)yA + tyB x’ x y’ y O P(-3,6) Q(6,2)

20 Équation d’un cercle. L’équation d’un cercle sur le plan est donnée par la formule (x-a)2 + (y-b)2 = r2 Le cercle a rayon r et il est centré au point (a,b). Théorème. L’équation Ax2+Ay2+Bx+Cy+D=0 est une équation d’un cercle. x’ x y’ y O (x+2)2+(y-4)2 = 9 P(-2,4)

21 Paire d’équations. Une paire d’équations déterminent le lieu de points appartenant à la fois aux deux objets géométriques, définis par chaque équation (leur intersection). L’intersection de deux droites est la solution d’un système de deux équations linéaires. L’intersection d’une droite avec un cercle est le résultat d’une solution d’un système de deux équations. Vu que ce système résulte en une équation quadratique, la solution donne 0, 1 ou 2 points.


Télécharger ppt "Lignes trigonométriques."

Présentations similaires


Annonces Google