CHAPITRE 1 Arithmétique

Slides:



Advertisements
Présentations similaires
CHAPITRE 5 Fractions.
Advertisements

CHAPITRE 5 Divisions et Problèmes
Les quotients (6) Définition d’un quotient
10- Les diviseurs d’un entier
Les règles de divisibilité
CHAPITRE 2 Nombres entiers, initiation à l’arithmétique- Nombres rationnels.
ARITHMETIQUE Bernard Izard 3° Avon PG I - DIVISEURS
Enseigner l’arithmétique en série L
Exemple 2 PGCD(210;126) Exercice 1 PGCD(1085;837)
Algorithme des différences Fraction irréductible
Activité Simplifier.
DIVISION EUCLIDIENNE 1. Définition 2. Propriétés de la division
Fraction... vue autrement
ACTIVITES Activité 1 Activité 2 Question 1 Question 2 a) b) c) a) b)
Fractions.
CHAPITRE 3 Calcul numérique et puissances
Pour tout entier n,n est entier ou irrationnel Un beau théorème absent de larithmétique dEuclide (Livres 7 à 9 des Éléments)
NOMBRES DIVISIBLES PAR 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ou 11
Nombres en écritures fractionnaires
Mr: Lamloum Med LES NOMBRES PREMIERS ET COMPOSÉS Mr: Lamloum Med.
Chap1- Arithmétique et fractions
CHAPITRE 3 Multiplication, Division et Problèmes
Diviseurs communs à deux entiers
Correction du reste des exercices
PGCD : sous ce sigle un peu bizarre se cache un outil bien utile dans les simplifications de fractions, mais aussi dans bien des problèmes de la vie courante…
4ème FRACTIONS Chapitre 3 1) Égalité de fractions
CHAPITRE 5 Fractions.
12- Calcul du PGCD Algorithme des différences
Décomposer un nombre en facteurs premiers.
DIVISIONS 1) La division euclidienne: Définition: Une division euclidienne est une division entre nombres entiers. dividende diviseur a b r q quotient.
Nombres entiers. Ensembles de nombres
Chapitre 1 PGCD de deux nombres.
Division euclidienne - décimale
ARITHMETIQUE : NOMBRES PREMIERS, PGCD
263 = 15 × = + × ARITHMETIQUE I DIVISEURS ET MULTIPLES
La division ne se termine pas
OPERATIONS SUR LES NOMBRES EN ECRITURE FRACTIONNAIRE
Calculs et écritures fractionnaires
DIVISION 1. Division euclidienne - Méthode
Introduction à l’algorithmique
CALCUL FRACTIONNAIRE.
EXERCICES D’ARITHMETIQUES
Simplifier une fraction
P G C F P G C F lus rand ommun acteur.
Mise en forme en Mathématiques
Elaboré par : Seif MESDOUA Mme M.DRIDI
Eléments d’arithmétique dans l’ensemble des naturels
Les règles de divisibilité
Simplification de fractions rationnelles
Arithmétique Classe 3e.
Cela signifie encore que n divise toute expression de la forme ka + k’b où k et k’ sont des entiers. Exemple: 7 divise 14 et 21 donc il divise ,par.
CHAPITRE 3: LES NOMBRES.
Fabienne BUSSAC 15 FRACTIONS + – 1. QUOTIENTS EGAUX
- Chap 7 - Fractions.
Leçon 20 PGCD, APPLICATIONS Fabienne BUSSAC.
Chapitre -3- FRACTIONS [A] MULTIPLES ET DIVISEURS (rappels de 6°: fiche n°106) jeudi 13 avril 2017  multiples  diviseurs  critères de divisibilité 
Vert orange jaune. vert orange jaune A) ARITHMETIQUE Liste des diviseurs de 48: 1;2;3;4;6;8;12;16;24;48.
Simplifier et comparer les fractions
Règles de divisibilité
Math Règles de divisibilités
Algorithme des différences
Ecritures fractionnaires Quotients
Algorithme des différences Fraction irréductible
Leçon Nombres entiers et rationnels
DIVISION I DIVISION EUCLIDIENNE 1° Activité
Transformation des fractions
Fraction irréductible
Seconde 8 Module 3 M. FELT 22/09/2015.
Fabienne BUSSAC CRITERES DE DIVISIBILITÉ 1. VOCABULAIRE
Division euclidienne - décimale
Transcription de la présentation:

CHAPITRE 1 Arithmétique

Le mot vient du grec « arithmos » = nombre. En effet, l’arithmétique est la science des nombres. Citons la célèbre conjecture de Goldbach énoncée en 1742 et à ce jour jamais démontrée : « Tout nombre entier pair est la somme de deux nombres premiers »

Objectifs: Trouver tous les diviseurs d’un nombre. Calculer le PGCD de deux entiers donnés. Déterminer si deux entiers sont premiers entre eux. Simplifier une fraction donnée pour la rendre irréductible. aaaaaa

Remarque : dans ce cas q est également un diviseur de a ! I. Divisibilité 1) Diviseurs Soient a et b deux entiers non nuls, b est un diviseur de a signifie que : a = b x q avec q entier. Remarque : dans ce cas q est également un diviseur de a ! Exemple : 21 = 3x7 7 est un diviseur de 21, 3 en est un également.

Critères de divisibilité Un nombre entier est divisible : - par 2, si son chiffre des unités est pair, - par 5, si son chiffre des unités est 0 ou 5, - par 10, si son chiffre des unités est 0, - par 3, si la somme de ses chiffres est divisible par 3, - par 9, si la somme de ses chiffres est divisible par 9. Exemples : 30 est divisible par 2, 5, 10 et 3. 1071 est divisible par 3 et 9.

2) Diviseurs communs à deux entiers Remarque : il s’agit d’établir la liste des nombres qui divisent à la fois les deux entiers. Exemple : Tous les diviseurs de 60 sont : 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , 30 , 60 Tous les diviseurs de 100 sont : 1 , 2 , 4 , 5 , 10 , 20 , 25 , 50 , 100 Les diviseurs communs à 60 et 100 sont : 1, 2, 4, 5, 10, 20

3) PGCD Le PGCD de deux nombres entiers est le Plus Grand Commun Diviseur à ces deux entiers. Exemple : Le PGCD de 60 et 100 est donc 20, on note PGCD(60;100) = 20

4) Algorithmes de calcul du PGCD de deux nombres entiers Le mot « algorithme » vient d’une déformation du nom du mathématicien perse al Khwarizmi (IXème siècle). Un algorithme est une succession de manipulations sur les nombres qui s’exécutent toujours de la même façon.

Méthode 1: L’algorithme d’Euclide (méthode avec des divisions euclidiennes successives) Déterminons PGCD(252;360) - on divise le plus grand par le plus petit : 360 252 108 1 - on divise le diviseur précédent par le reste précédent: 252 108 36 2

- on divise le diviseur précédent par le reste précédent : 108 36 0 3 - le reste est nul, on arrête. PGCD(252 ; 360) = 36 (dernier reste non nul) Remarque : On peut résumer ces différentes étapes dans un tableau et utiliser la touche ÷R de la calculatrice pour trouver les différents restes successifs.

Méthode 2: Algorithme des soustractions successives Déterminons PGCD(252,360)  - on soustrait le plus grand par le plus petit : 360 – 252 = 108 - on soustrait les plus petits entre eux : 252 – 108 = 144 - on soustrait les plus petits entre eux : 144 – 108 = 36 - on soustrait les plus petits entre eux : 108 – 36 = 72

- on soustrait les plus petits entre eux : 72 – 36 = 36 36 – 36 = 0 - la différence est nulle, on arrête. PGCD(252 ; 360) = 36 (dernière différence non nulle) Remarque : On peut également résumer ces différentes étapes dans un tableau.

II. Nombres premiers entre eux On dit que deux nombres sont premiers entre eux lorsque leur PGCD est égal à 1. Exemple : Tous les diviseurs de 10 sont : 1 , 2, 5 et 10. Tous les diviseurs de 7 sont : 1 et 7. donc PGCD(10;7) = 1 on dit que 10 et 7 sont premiers entre eux.

III. Application aux fractions On dit qu’une fraction est irréductible, lorsque son numérateur et son dénominateur sont premiers entre eux. Remarque : Pour rendre une fraction irréductible, il faut la simplifier par le PGCD de son numérateur et son dénominateur. Exemples: Les fractions et sont-elles irréductibles ? Dans le cas contraire, les simplifier. 1) PGCD(10 ; 7) = 1 donc est irréductible. 2) PGCD(252 ; 360) = 36 donc = =