Le point le plus près Montage préparé par : André Ross

Slides:



Advertisements
Présentations similaires
ORTHOGRAM PM 3 ou 4 Ecrire: « a » ou « à » Référentiel page 6
Advertisements

LES NOMBRES PREMIERS ET COMPOSÉS
[number 1-100].
Qualité du Premier Billot. 2 3 Défauts reliés à labattage.
1. Résumé 2 Présentation du créateur 3 Présentation du projet 4.
La Méthode de Simplexe Standardisation
Licence pro MPCQ : Cours
Distance inter-locuteur
Le pluriel des noms
Les numéros
Vérifier les Droites Parallèles
LA RECIPROQUE DE THALES
Les identités remarquables
ACTIVITES Le calcul littéral (3).
Les Prepositions.
2 1. Vos droits en tant quusagers 3 1. Vos droits en tant quusagers (suite) 4.
Produit vectoriel Montage préparé par : André Ross
Modèle affine Montage préparé par : André Ross
Mr: Lamloum Med LES NOMBRES PREMIERS ET COMPOSÉS Mr: Lamloum Med.
Cours LES PLANS. Au dernier cours nous avons vus Léquation vectoriel et léquation normale dune droite dans le plan. Léquation vectoriel dune droite.
Angles et distances dans R2
Géométrie vectorielle
Produit vectoriel Montage préparé par : André Ross
Fonction puissance Montage préparé par : André Ross
Titre : Implémentation des éléments finis sous Matlab
Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon André Ross Professeur de mathématiques Cégep de Lévis-Lauzon Modélisation.
Fonction puissance et modélisation
Systèmes d’équations et équations chimiques
Matrice inverse et applications
LES NOMBRES PREMIERS ET COMPOSÉS
Produit mixte Montage préparé par : André Ross
Le plan dans R3 Intersections, angles et distances
La droite dans R2 Montage préparé par : André Ross
Droites et plans, positions relatives
Systèmes d’équations du premier degré à deux variables
1 INETOP
Calculs et écritures fractionnaires
RACINES CARREES Définition Développer avec la distributivité Produit 1
Représentation des systèmes dynamiques dans l’espace d’état
Systèmes mécaniques et électriques
Représentation des systèmes dynamiques dans l’espace d’état
Représentation des systèmes dynamiques dans l’espace d’état
DUMP GAUCHE INTERFERENCES AVEC BOITIERS IFS D.G. – Le – 1/56.
3.1 DÉTERMINANTS (SUITE) Cours 6.
1.1 LES VECTEURS GÉOMÉTRIQUES
3.2 PRODUIT VECTORIEL Cours 7.
Tournoi de Flyball Bouin-Plumoison 2008 Tournoi de Flyball
Notre calendrier français MARS 2014
Titre : Implémentation des éléments finis en Matlab
C'est pour bientôt.....
Veuillez trouver ci-joint
La droite dans R3 Montage préparé par : André Ross
Équipe 2626 Octobre 2011 Jean Lavoie ing. M.Sc.A.
Transformations linéaires et sous-espaces associés
Sous-espaces vectoriels engendrés
La droite dans R3 Intersections, angles et distances
Elaboré par M. NUTH Sothan 1. 2 Soit x, y et z des coordonnées cartésiennes à 3 dimension. G un ensemble de points dans le plan (u, v). Déf. : On appelle.
ECOLE DES HAUTES ETUDES COMMERCIALES MARKETING FONDAMENTAL
Traitement de différentes préoccupations Le 28 octobre et 4 novembre 2010.
ECOLE DES HAUTES ETUDES COMMERCIALES MARKETING FONDAMENTAL
1/65 微距摄影 美丽的微距摄影 Encore une belle leçon de Macrophotographies venant du Soleil Levant Louis.
Equation différentielle de 2ème ordre
CALENDRIER-PLAYBOY 2020.
Les Chiffres Prêts?
Tolérance de parallélisme
Partie II: Temps et évolution Energie et mouvements des particules
Les parties du corps By Haru Mehra Le Frehindi 1Haru Mehra, DELF, DALF,CFP.
Équations de plans.
Transcription de la présentation:

Le point le plus près Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon

Introduction Nous verrons comment déterminer le point d’une droite ou d’un plan le plus rapproché d’un point hors de cette droite ou de ce plan.

Le point le plus près dans R2 Le point R d’une droite ∆ le plus proche d’un point Q hors de celle-ci est le pied de la perpendiculaire abaissée du point Q sur la droite ∆. On peut développer diverses stratégies pour trouver les coordonnées de ce point. Nous verrons comment procéder en déterminant l’intersection de lieux géométriques.

Le point le plus près dans R2 Intersection de lieux Procédure pour déterminer le point R d’une droite le plus rapproché d’un point Q hors de cette droite par l’intersection de lieux. 1. Déterminer une équation de la droite passant par le point Q et perpendiculaire à la droite ∆. 2. Substituer les équations paramétriques dans l’équation carté-sienne. 3. Calculer la valeur du paramètre au point de rencontre des droites. 4. Substituer la valeur du paramètre dans les équations paramétriques pour déterminer les coordonnées du point de rencontre qui est le point le plus rapproché.

Exemple 11.3.13 Utiliser la méthode de l’intersection de lieux pour trouver le point de ∆ : x – 2y + 4 = 0 le plus proche du point Q(4; 9). On cherche le pied R de la perpendiculaire abaissée du point Q sur la droite ∆. Or, cette droite est parallèle au vecteur normal à ∆. (6; 5) La description paramétrique de la droite passant par Q et perpendiculaire à ∆ est : x = 4 + t y = 9 – 2t En substituant ces équations paramétriques dans l’équation de la droite ∆, on obtient : En substituant cette valeur dans les équations paramétriques, on obtient : (4 + t) – 2(9 – 2t) + 4 = 0 x = 4 + 2 = 6 y = 9 – 2 ´ 2 = 5 D’où : 4 + t – 18 + 4t + 4 = 0 S S Le point le plus rapproché est donc R(6; 5). Cela donne : 5 t – 10 = 0 et t = 2

Exemple 10.3.5 Utiliser la méthode de l’intersection de lieux pour trouver le point de ∆ : (5; 6) x = –1 + 4t y = 3 + 2t le plus proche du point Q(7; 2). L’équation cartésienne de la droite passant par Q et perpendiculaire à ∆ est donnée par : (x – 7; y – 2) • (4; 2) = 0 D’où : 4x – 28 + 2y – 4 = 0 Et : 4x + 2y – 32 = 0 En substituant les équations paramétriques de ∆ dans l’équation de la perpendiculaire passant par Q, on obtient : En substituant cette valeur dans les équations paramétriques de ∆, on obtient : 4(–1 + 4t) + 2(3 + 2t) – 32 = 0 x = –1 + 4(3/2) = 5 y = 3 + 2(3/2) = 6 D’où : –4 + 16t + 6 + 4t – 32 = 0 S S Le point le plus rapproché est donc R(5; 6). Cela donne : 20 t – 30 = 0 et t = 3/2

Exercice Utiliser la méthode de l’intersection de lieux pour trouver le point de ∆ : 3x – 2y – 15 = 0 le plus proche du point Q(–2; 9). (7; 3) La description paramétrique de la droite passant par Q et perpendiculaire à ∆ est : x = –2 + 3t y = 9 – 2t En substituant ces équations paramétriques dans l’équation de la droite ∆, on obtient : En substituant cette valeur dans les équations paramétriques, on obtient : 3(–2 + 3t) – 2(9 – 2t) – 15 = 0 x = –2 + 3 ´3 = 7 y = 9 – 2 ´3 = 3 D’où : –6 + 9t – 18 + 4t – 15 = 0 S S Le point le plus rapproché est donc R(7; 3). Cela donne : 13t – 39 = 0 et t = 3

Exercice Utiliser la méthode de l’intersection de lieux pour trouver le point de ∆ : x = –1 + 3t y = 9 – 2t (5; 5) le plus proche du point Q(3; 2). L’équation cartésienne de la droite passant par Q et perpendiculaire à ∆ est donnée par : (x – 3; y – 2) • (3; –2) = 0 D’où : 3x – 9 – 2y + 4 = 0 Et : 3x – 2y – 5 = 0 En substituant les équations paramétriques de ∆ dans l’équation de la perpendiculaire passant par Q, on obtient : En substituant cette valeur dans les équations paramétriques de ∆, on obtient : 3(–1 + 3t) – 2(9 – 2t) – 5 = 0 x = –1 + 3 ´2 = 5 y = 9 – 2 ´2 = 5 D’où : –3 + 9t – 18 + 4t – 5 = 0 S S Le point le plus rapproché est donc R(5; 5). Cela donne : 13t – 26 = 0 et t = 2

Le point le plus près dans R3 Méthode de l’intersection de lieux Le point d’une droite le plus près d’un point Q hors de cette droite dont on connaît un vecteur directeur (description paramétrique). Le point cherché est le pied de la perpendiculaire abaissée du point Q sur la droite ∆. Cette droite est dans un plan ∏ perpendiculaire à ∆ et passant par le point Q. Le vecteur directeur de la droite ∆ est donc un vecteur normal au plan ∏. On peut donc déterminer une équation cartésienne du plan ∏ et trouver son intersection avec la droite ∆.

Exemple 11.3.16 (Intersection de lieux) x = 8 + 3t y = –1 – 2t z = –2 + t le point le plus rapproché du point Q(3; 8; 3). Trouver sur la droite ∆ : On cherche le pied R de la perpendiculaire abaissée du point Q sur la droite ∆. Or, cette droite est dans un plan perpendiculaire à ∆. L’équation cartésienne du plan passant par Q et perpendiculaire à ∆ est : (3; –2; 1) • (x – 3; y – 8; z – 3) = 0, d’où : 3x – 2y + z + 4 = 0 En substituant cette valeur dans les équations paramétriques, on obtient : En substituant les équations paramétriques de la droite dans l’équation du plan ∏, on obtient : x = 8 + 3 ´(–2) = 2 y = –1 – 2 ´(–2) = 3 z = –2 + 1 ´(–2) = –4 3(8 + 3t) – 2(–1 – 2t) + (–2 + t) + 4 = 0 S S S D’où : 24 + 9t + 2 + 4t – 2 + t + 4 = 0 Le point le plus rapproché est donc R(2; 3; –4). Cela donne : 14t + 28 = 0 et t = –2

Exercice (Intersection de lieux) x = 7 – 4t y = –4 + 2t z = –2 + 3t le point le plus rapproché du point Q(–2; 8; 7). Trouver sur la droite ∆ : On cherche le pied R de la perpendiculaire abaissée du point Q sur la droite ∆. Or, cette droite est dans un plan perpendiculaire à ∆. ∏ L’équation cartésienne du plan passant par Q et perpendiculaire à ∆ est : (–4; 2; 3) • (x + 2; y – 8; z – 7) = 0, d’où : –4x + 2y + 3z – 45 = 0 En substituant les équations paramétriques de la droite dans l’équation du plan ∏, on obtient : En substituant cette valeur dans les équations paramétriques, on obtient : x = 7 – 4 ´3 = –5 y = –4 + 2 ´3 = 2 z = –2 + 3 ´3 = 7 –4(7 – 4t) + 2(–4 + 2t) + 3(–2 + 3t) – 45 = 0 S S S D’où : –28 + 16t – 8 + 4t – 6 + 9t – 45 = 0 Cela donne : 29t – 87 = 0 et t = 3 Le point le plus rapproché est donc R(–5; 2; 7).

Le point d’un plan le plus près d’un point hors du plan (méthode de l’intersection de lieux) Le point d’un plan le plus près d’un point Q hors de ce plan dont on connaît un vecteur normal (équation cartésienne). Le point cherché est le pied de la perpendiculaire abaissée du point Q sur le plan ∏. Cette perpendiculaire est une droite ∆ passant par le point Q et ayant comme vecteur directeur le vecteur normal au plan ∏. On peut donc déterminer une description paramétrique de la droite ∆ et trouver son intersection avec le plan ∏.

Exemple 11.3.17 Utiliser la méthode de l’intersection de lieux pour trouver le point de ∏ : x + 2y + 3z –28 = 0 le plus proche du point Q(7; 9; 15). On cherche le pied R de la perpendiculaire abaissée du point Q sur le plan ∏. Or, cette droite est parallèle au vecteur normal à ∏. La description paramétrique de la droite passant par Q et perpendiculaire à ∏ est : x = 7 + t y = 9 + 2t z = 15 + 3t En substituant ces équations paramétriques dans l’équation du plan ∏, on obtient : En substituant cette valeur dans les équations paramétriques, on obtient : (7 + t) + 2(9 + 2t) + 3(15 + 3t) – 28 = 0 x = 7 + 1 ´(–3) = 4 y = 9 + 2 ´(–3) = 3 z = 15 + 3 ´(–3) = 6 D’où : 7 + t + 18 + 4t + 45 + 9t – 28 = 0 S S Cela donne : 14t + 42 = 0 et t = –3 Le point le plus rapproché est donc R(4; 3; 6).

Exercice Utiliser la méthode de l’intersection de lieux pour trouver le point de ∏ : 5x + 3y + z – 16 = 0 le plus proche du point Q(23; 14; –1). On cherche le pied R de la perpendiculaire abaissée du point Q sur le plan ∏. Or, cette droite est parallèle au vecteur normal à ∏. La description paramétrique de la droite passant par Q et perpendiculaire à ∏ est : x = 23 + 5t y = 14 + 3t z = –1 + t En substituant ces équations paramétriques dans l’équation du plan ∏, on obtient : En substituant cette valeur dans les équations paramétriques, on obtient : 5(23 + 5t) + 3(14 + 3t) + (–1 + t) – 16 = 0 x = 23 + 5 ´(–4) = 3 y = 14 + 3 ´(–4) = 2 z = –1 + 1 ´(–4) = –5 D’où : 115 + 25t + 42 + 9t – 1 + t – 16 = 0 S S Cela donne : 35t + 140 = 0 et t = –4. Le point le plus rapproché est donc R(3; 2; –5).

Les points les plus rapprochés de deux droites gauches Méthode du vecteur normal Lorsqu’on a deux droites gauches , il y a toujours des plans parallèles contenant les droites. En notant A et B, les points les plus rapprochés, on a alors : AB = k N Les coordonnées des points A et B doivent satisfaire aux équations para-métriques de leur droite respective. On peut donc établir un système de contraintes dont les variables sont les paramètres des équations des droites et le scalaire k. En résolvant ce système, on connaîtra la valeur des paramètres aux points les plus rapprochés.

Exemple 11.3.18 (vecteur normal) Trouver les points les plus proches sur les droites gauches suivantes : x = 7 – 2t y = –6 + 4t z = 6 – t x = 1 + s y = –10 – 3s z = 8 + 2s ∆1 : ∆2 : Les vecteurs directeurs sont : D1 = (–2; 4; –1) et D2 = (1; –3; 2) N = (5; 3; 2) En résolvant, on a : Trouvons le vecteur normal : Puisque : Notons A(a; b; c), le point cherché sur la droite ∆1, et B(d; e; f), le point cherché sur la droite ∆2. AB = k N, on a : 1 –3 L1 – 13L3 1 2 –5 6 Les points les plus rapprochés sont donc A(3; 2; 4) sur ∆1 et B (–2; –1; 2) sur ∆2. i j k 1 2 –5 6 (s + 2t – 6; –3s – 4t – 4; 2s + t + 2) = k(5; 3; 2) = (5k; 3k; 2k) L1 ≈ 1 2 N = D1 ´ D2 = L2 + 9L3 = (8 – 3) i – (–4 + 1) j + (6 – 4) k –3 –4 –3 4 ≈ –2 4 –1 Il existe donc des valeurs de t et s telles que : 2 –18 22 L2 + 3L1 1 –1 L3 S 2 1 –2 –2 1 –3 2 –3 = 5 i + 3 j k + 2 8 –14 a = 7 – 2t b = –6 + 4t c = 6 – t L3 – 2L1 d = 1 + s e = –10 – 3s f = 8 + 2s On a donc s = –3 et t = 2, d’où : s + 2t – 5k = 6 –3s – 4t – 3k = 4 2s + t – 2k = –2 S S S D’où l’on tire le système d’équations : 1 13 –16 1 13 –16 L1 – L2 L1 x = 7 – 2 ´2 = 3 y = –6 + 4 ´2 = 2 z = 6 – 2 = 4 x = 1 – 3 = –2 y = –10 – 3 ´(–3) = 1 z = 8 + 2 ´(–3) = 2 ≈ 2 –18 22 ≈ 1 –9 11 A : L2 B : L2 /2 D’où : AB = (d – a; e – b: f – c) = (s + 2t – 6; –3s – 4t – 4; 2s + t + 2) –38 38 1 –1 2L3 + 3L2 L3 /(–38)

Exercice (vecteur normal) Trouver les points les plus proches sur les droites gauches suivantes : x = –4 + 3t y = –10 + 7t z = –11 + 4t x = 1 + s y = 1 – s z = 11 – s ∆1 : ∆2 : Les vecteurs directeurs sont : D1 = (3; 7; 4) et D2 = (1; –1; –1) N = (–3; 7; –10) Trouvons le vecteur normal : En résolvant, on trouve : Puisque : Notons A(a; b; c), le point cherché sur la droite ∆1, et B(d; e; f), le point cherché sur la droite ∆2. AB = k N, on a : i Les points les plus rapprochés sont donc A(2; 4; –3) sur ∆1 et B (–2; –1; 2) sur ∆2. j k 1 –3 3 –5 1 10 –3 3 40 –5 (s – 3t + 5; –s – 7t + 11; –s – 4t + 22) = k (–3; 7; –10) = (–3k; 7k; –10k) L1 – 42L3 N = D1 ´ D2 = L1 = (–7 + 4) i – (–3 – 4) j + (–3 – 7) k 3 7 4 ≈ –20 Il existe donc des valeurs de t et s telles que : –1 –7 –7 –11 ≈ –10 –10 –4 –16 L2 + L1 L2 + 4L3 1 –1 –1 = –3 i + 7 j k – 10 S D’où l’on tire le système d’équations : –1 –4 10 –22 L3 –7 1 –1 L3 + L1 d = 1 + s e = 1 – s f = 11 – s 13 –27 a = –4 + 3t b = –10 + 7t c = –11 + 4t On a donc s = 4 et t = 2, d’où : s – 3t + 3k = –5 –s – 7t – 7k = –11 –s – 4t + 10k = –22 10 42 –2 10 42 –2 S S S 10L1 – 3L2 L1 x = –4 + 3 ´2 = 2 y = –10 + 7 ´2 = 4 z = –11 + 4 ´2 = –3 x = 1 + 4 = 5 y = 1 – 4 = –3 z = 11 – 4 = 7 ≈ ≈ –10 –4 –16 –10 –4 –16 A : L2 B : L2 D’où : AB = (d – a; e – b: f – c) = (s – 3t + 5; –s – 7t + 11; –s – 4t + 22) 158 –158 1 –1 10L3 – 7L2 L3 /(–158)

Conclusion En utilisant les vecteurs directeurs et les vecteurs normaux, on peut déterminer l’équation d’une droite ou d’un plan perpendiculaire à un plan ou à une droite donnée passant par un point extérieur à cette droite. L’intersection de ces lieux géométriques donne le point le plus rapproché.

Lecture Mathématiques pour la chimie et la biologie, section 11.3, p. 340 à 354. Exercices Mathématiques pour la chimie et la biologie, section 11.4, p. 364 et 367.