Traitement d’images : concepts fondamentaux

Slides:



Advertisements
Présentations similaires
Bratec Martin ..
Advertisements

NOTIFICATION ÉLECTRONIQUE
Fragilité : une notion fragile ?
SEMINAIRE DU 10 AVRIL 2010 programmation du futur Hôtel de Ville
Phono-sémantique différentielle des monosyllabes italiens
MAGGIO 1967 BOLOGNA - CERVIA ANOMALIES DU SOMMEIL CHEZ L'HOMME
droit + pub = ? vincent gautrais professeur agrégé – avocat
Transcription de la présentation:

Traitement d’images : concepts fondamentaux Définitions fondamentales et prétraitements :  Information représentée par un pixel, Manipulation d’histogrammes : égalisation, Filtrage passe-bas. Introduction à la morphologie mathématique (cas binaire) :  Erosion, dilatation, ouverture et fermeture binaires, Reconstruction géodésique, étiquetage en composantes connexes, Squelette. Détection de contours : filtrage passe-haut, filtrage optimal, traitement des contours : fermeture, transformée de Hough. Introduction à la classification (cas pixelique) : algorithme des k-ppv, des c-moyennes critères bayésiens : MV, MAP.

Classification : objectifs Mettre en évidence les similarités/ dissimilarités entre les ‘objets’ (e.g. pixels) Obtenir une représentation simplifiée (mais pertinente) des données originales Mettre sous un même label les objets ou pixels similaires  Définitions préalables Passer de l’espace des caractéristiques à celui des classes → règle : supervisée / non supervisée, paramétrique / non paramétrique, probabiliste / syntaxique / autre, avec rejet / sans rejet Espace des caractéristiques d (sS, ysd) Espace de décision = ensemble des classes W (sS, xsW), W = {wi, i[1,c] } Règle de décision ( = d(ys) ) Critère de performance numériques ou syntaxiques

Ex. de classification non paramétrique Classification k-ppv (plus proches voisins) On dispose d’un ensemble (de ‘référence’) d’objets déjà labelisés Pour chaque objet y à classifier, on estime ses k ppv selon la métrique de l’espace des caractéristiques, et on lui affecte le label majoritaire parmi ses k ppv Possibilité d’introduire un rejet (soit en distance, soit en ambiguïté) Très sensible à l’ensemble de référence Exemples : Euclidienne, Mahanolobis…  Possibilité de modélisation de loi complexes, de forme non nécessairement paramétrique (ex. en 2D disque et couronne) 1-ppv 3-ppv 5-ppv k-ppv (/24)

Connaissance des caractéristiques des classes Cas supervisé Connaissance a priori des caractéristiques des classes Apprentissage à partir d’objets déjà étiquetés (cas de données ‘complètes’) Cas non supervisé Définition d’un critère, ex. : - minimisation de la probabilité d’erreur - minimisation de l’inertie intra-classe  maximisation de l’inertie inter-classes Définition d’un algorithme d’optimisation

Equivalence minimisation de la dispersion intra-classe / maximisation de la dispersion inter-classes

Algorithme des c-moyennes (cas non sup.) Initialisation (itération t=0) : choix des centres initiaux (e.g. aléatoirement, répartis, échantillonnés) Répéter jusqu’à vérification du critère d’arrêt : t++ Labelisation des objets par la plus proche classe Mise à jour des centres par minimisation de l’erreur quadratique : Estimation du critère d’arrêt (e.g. test sur #ch(t) ) c=2 c=3 c=4 Remarques : # de classes a priori Dépendance à l’initialisation c=5

Variantes K-moyennes ISODATA Nuées dynamiques Regroupement ou division de classes  nouveaux paramètres : qN=#min objets par classe, qS seuil de division (division de la classe i si : maxj[1,d]sij > qS et #objets de la classe > 2qN+1 et Iintra(i) > Iintra), qC seuil de regroupement (regroupement des classes i et j si : dist(mi, mj)qC), #max itérations Nuées dynamiques Remplacement de la mesure de ‘distance’ par une mesure de ‘dissemblance’ dis(ys,wi)  minimiser classe i représentée par son ‘noyau’, e.g. centre ( K-moyennes), plusieurs ‘échantillons’ de référence zl l[1,p] (dis(.,.) = moyenne des distances de l’objet aux  zl)

Probabilités et mesure de l’information Probabilités fréquencistes / subjectivistes Physique stat. : répétition de phénomènes dans des ‘longues’ séquences  probabilité = passage à la limite d’une fréquence ≠ Modèle de connaissance a priori : degré de confiance relatif à un état de connaissance  probabilité = traduction numérique d’un état de connaissance Remarque : Quantité d’information et probabilités I = -log2(pi)  I ≥ 0, information d’autant plus importante que évènement inattendu (de faible probabilité)

Théorie bayésienne de la décision La théorie de la décision bayésienne repose sur la minimisation du ‘risque’ Soit Ct(x,x’) le coût associé à la décision de x’ alors que la réalisation de X était x La performance de l’estimateur x’ est mesurée par le risque de Bayes E[Ct(x,x’)] = Coût marginal (conditionnel à y) à minimiser Or x’P(x’/y)=1 et x’, P(x’/y)≥0, La règle qui minimise le coût moyen est donc celle telle que P(x’/y)=1 si et seulement si xP(x/y)Ct(x,x’)=1 P(x’/x,y)=P(x’/y) car décision selon y seul

Exemple Détection d’un véhicule dangereux (V) Décider V si et seulement si  Cas où a>b, on va décider plus facilement V que V en raison du coût plus fort d’une décision erronée en faveur de V que de V

Critère du Maximum A Posteriori Ct(x,x’) = 0, si x = x’ = 1, si x  x’

Cas d’un mélange de lois normales Exemples

Estimation de seuils (cas supervisé) Image = ensemble d’échantillons suivant une loi de distribution de paramètres déterminés par la classe ex. : distribution gaussienne Cas 1D (monocanal), si seuil de séparation des classes wi et wi+1, probabilité d’erreur associée : Maximum de vraisemblance :

Maximum de vraisemblance (suite) : Maximum A Posteriori : 

Lien c-moyennes / théorie bayésienne Maximum de vraisemblance sur des lois de paramètres qi (e.g. qi=(mi,Si)) inconnus : Cas d’échantillons indépendants : max. de la logvraisemblance d’où : (*) or : d’où (*)  Cas gaussien, Si connus, mi inconnus  résolution itérative c-moyennes : Si=Id i[1,c] et P(wi | ys,q) = 1 si wi = xs, = 0 sinon en effet : en effet : d’où :

Classification SVM (Séparateurs à Vastes Marges) (Vapnik, 1995) Exemple de classification à base d’apprentissage Hyp. :  1 classifieur linéaire dans un espace approprié  utilisation de fonctions dites à noyau pour projetter les données dans cet espace Exemple simplissime (cas binaire) : Supervisé / Semi-supervisé Critère d’optimalité  maximisation de la marge distance entre hyperplan et ens. des échantillons Vecteurs de support Marge = 2/||w||

Cas séparable : il ‘suffit’ de maximiser la marge Ex. de noyaux : polynômial, sigmoïde, gaussien, laplacien. Cas non séparable  projection dans 1 espace de dimension supérieure :

Calcul de l’hyperplan (cas linéaire, 2 classes) xi{-1,1} Éq. de l’hyperplan séparateur : h(y) = wTy + w0 = 0 Condition de séparabilité : Problème sous sa forme ‘primale’ marge =  minimiser sous contrainte  minimiser lagrangien : Nombre d’échantillons d’apprentissage

Calcul de l’hyperplan (cas linéaire, 2 classes) Problème sous sa forme ‘duale’ en annulant les dérivées partielles du lagrangien : à introduire dans (1) Ne fait intervenir que les vecteurs de support Soluble par programmation quadratique  .

Nécessaire de connaître uniquement le produit scalaire SVM Cas non linéaire Transformation non linéaire f Nécessaire de connaître uniquement le produit scalaire Fonction à noyau Exemples de noyaux polynômial gaussien

Utilisation des SVM pour la classif. d’image Principalement cas de données de grande dimension  Niveau pixel caractéristiques multi-échelles caractéristiques spectrales  Niveau objet caractéristiques de forme caractéristiques de texture  Niveau image caractéristiques en termes de pixels d’intérêt À comparer avec k-ppv, & réseaux de neurones. En entrée de la classif. : 1 image des données + 1 segmentation  labelisat° des segments Classification de l’image, e.g. en terme de type de scène Difficulté principale : choix des caractéristiques en entrée, du noyau de la stratégie pour passer en multi-classes (1 contre 1, 1 contre tous)  SVM  boite ‘noire’ efficace mais interprétation a posteriori limitée

Classification : exercices (I) Soit l’image à deux canaux suivante : Soit les pixels de référence suivants : label 1 : valeurs (1,03;2,19) (0,94;1,83) (0,59;2,04) label 2 : valeurs (2,08;0,89) (2,23;1,16) (1,96;1,14) Effectuer la classification au k-ppv. Commentez l’introduction d’un nouveau pixel de référence de label 1 et de valeurs (1,32;1,56) 2,48 1,68 2,24 2,55 2,36 1,64 2,20 1,42 1,96 2,43 1,95 1,61 2,23 1,55 2,50 1,57 1,65 1,92 2,34 1,41 2,45 1,50 2,28 2,53 2,11 2,08 2,27 1,63 1,32 0,80 1,20 0,59 0,94 1,36 1,59 1,03 1,14 1,26 1,04 0,83 1,10 1,09 0,64 1,52 0,40 0,55 1,30 1,33 0,95 0,50 1,13 0,70 0,76 1,16 0,56 1,60 1,06 1,33 0,67 0,55 1,32 0,80 1,42 1,44 1,23 0,51 0,95 0,81 1,04 1,03 1,16 0,43 0,45 1,35 0,91 1,21 1,55 1,53 0,60 1,18 0,83 0,89 0,58 1,14 1,47 1,06 1,56 1,52 1,78 2,04 1,79 2,50 1,72 1,83 2,19 2,14 1,76 2,49 1,46 1,41 1,80 2,31 1,68 2,54 1,62 2,44 2,41 2,40 2,56 2,48 2,35 2,28 1,95 1,51 2,24 2,53 1,50

Exercices (I) : correction

Classification : exercices (II) Sur l’image à deux canaux précédente : Déterminer les seuils de décision pour chacun des canaux si l’on suppose 2 classes gaussiennes de caractéristiques respectives : canal 1 : (m1,s1)=(2.0,0.38), (m2,s2)=(1.0,0.34) canal 2 : (m1,s1)=(1.0,0.36), (m2,s2)=(2.0,0.39) Effectuer la classification par seuillage. Effectuer la classification c-means pour c=2. Comparer avec les résultats précédents. Comparer avec la classification c-means pour c=3.

Exercices (II) : correction

Bibliographie H. Maître, Le traitement des images, Hermès éditions. J.-P. Cocquerez & S. Philipp, Analyse d’images : filtrage et segmentation, Masson éditions. S. Bres, J.-M. Jolion & F. Lebourgeois, Traitement et analyse des images numériques, Hermès éditions.