L’A380 pour Air France
A3XX dimensions A3XX / A3XX-F 79.8 m 73 m 24.1 m SPAN LENGTH HEIGHT
Caractéristiques de l’A380 Capacité passager 555/559* Capacité fret 38 LD3s or 13 palettes 18 LD3s* and 5 palettes* Rayon d’action (max pax) 8,000 nm / 6700 nm* MDTOW 560 t MLW 386 t MZFW 361 t OWE (masse de base) 277 t / 293.1 t * Charge marchande 84 t / 67.9 t * Capacité carburant 310 000 l Poussée moteur (slst) 302 kN * Configuration Air France
Rayon d’action autour de Paris A380/GP7200 Rayon d’action avec charge marchande maximale passager (559pax) 548t/560t: 6398nm/6731nm Vents les plus défavorables- probabilité annuelle de 85% ISA Marge de 3% sur le rayon d’action
L’ économie de l’ avion L’A380 : un avion économiquement attractif Ref :747-400, 416 sièges, Prix catalogue : 180 m$ 2000 Coût carburant /siège* Coût direct d'opération/siège* Prix/siège -10% -13.5% -15% A380-800, 555 sièges, Prix catalogue: 216 m$ 2000 L’A380 : un avion économiquement attractif *Comparaison basée sur un secteur de 6000 nm - coûts d ’opération standards Airbus
Nose Fuselage Dimensions
L’A380 : capacité et espace Plus grand dehors 747-400 +35 % de capacité supplémentaire 2 cabines distinctes (ponts principal et supérieur) Un confort et flexibilité grâce à deux très larges cabines Plus grand dedans 233’’ Fuselage large 160’’ 241’’ 259’’ Fuselage large
DU CONFORT POUR LE PASSAGER La réponse A380 DU CONFORT POUR LE PASSAGER De 4 à 9 de front De 4 à 11 de front Poste de repos et toilettes en soutes optionnels Palettes … ET DE LA CAPACITE CARGO 2 palettes LD3s et/ou palettes
Configuration A380 Air France :559 sièges Pont supérieur 78J, pas 48” 135 Y, pas 31” Pont principal 16 P, pas 82” 330 Y, pas 31”
Les prochaines étapes du programme Gel de la Configuration Autorisation commerciale Clients de lancement Définition terminée Premier vol Mise en service Jan. 99 Mi 2000 Durant 2000 Fin 2001 Mi 2004 Début 2006
Principales innovations 2 Packs ( BP et HP ) PA intégré au CDV Génération électrique : fréquence variable. CDV : concept EHA et EBHA Fuel : optimisation du CG de l’ avion lors du remplissage. Hydraulique : 5000 Psi. LDG : 22 roues / aide au management de configuration. Oxygéne : Systéme OBOGS ? OIS / OMS : avion communicant / informations embarquées….. Station de maintenance : face au pylone + possibilité d’ interrogation à distance par terminaux sans fil. Structures : CFRP / Glare Portes : électriques Moteurs : surveillance enrichie ( analyse des gaz en sortie ….. )
Control and Display System 8 identical potentially interactive displays 2 multi-functions keyboards 2 multi-functions Cursor Control Devices
Maintenance station
To be examined in the mock-up
Rear Fuselage Same ladder in different positions
Air Generation pack concept - redundancy 3 3 3 3+3* 4 2 4 4+2* *for HX-mode Conventional Technology Advanced FCV RHX RDA ACM BPV HP - LP - No. of Components FCV1 FCV2 Components: FCV: Flow Control Valve RHX: Ram Heat Exchanger RDA: Ram Door Actuator BPV: Bypass Valve ACM: Air Cycle Machine Conventional: Most single failures result in loss of complete pack. Advanced: No cooling degradation due to most single failures.
Variable frequency network Objectives : Significant improvement of the ATA24 DMC and operational reliability Reduction of the aircraft systems DMC Re-open industrial competition Suppliers involved TRW-LUCAS : 120 KVA variable frequency generator on test. HONEYWELL-ALLIED : 150 kVA generator in lab. in Feb 2001 HAMILTON SUNDSTRAND: 150 kVA gen. in lab. in Feb 2001 Network characterization under process with EUROCAE and RTCA (DO160 update) 115 V AC network confirmed
AC network general architecture 4x150kVA VFG AC1 AC2 AC4 AC3 Galley3 Galley 2 Galley1 Galley4 Engine 1 Engine 2 Engine 3 Engine 4 APU <<Ext 1 <<Ext 2 Ext 3>> Ext 4>> 2x120kVA CF gen 4x90kVA ext. connections
Fuel System Gauging technology under evaluation Fuel system provides Protection of fuel volume following engine rotor failure (FAR 25.903(d)(1)) Provision of wing bending relief and CG management Embodiment of TWA800 accident recommendations Inner Engine Feed Tank Aft Center Tank Inner Transfer Tank Aft center tank- 42 400 litres (-800 R and -900 only) Inner feed Tank - 28500 litres Inner Transfer Tank - 84400 litres Outer Eng Feed Tank - 28400 litres Outer Transfer Tank - 10600 litres Trim tank - 24 000 litres Gauging technology under evaluation Refueling procedure under review with the airlines Outer Engine Feed Tank Vent Tanks Outer Transfer Tank Trim Tank
Increased hydraulic pressure 5000 psi Kick-off (1998) : current experience potential show stoppers criteria for trade-off action list Hydraulic fluid analysis Initial actions Trade-off study (PDR) Review with the airlines - system workshop 26/28 Oct 1999 Final decision : 8 November 1999 + follow-up actions System weight : - 1200 kg Feasibility confirmed Technical risk on Hydraulic system reduced Airline questionnaire 2 Hyd. benches for endurance Definition of standards Additional benches in suppliers
2H/2E Architecture Schematic Electric System 1 Electric System 2 RAT 6 (L & R) Upper & Lower LIB & RIB Pitch trim Slats 4 (L & R) LOB & ROB L & R i/b L & R o/b Eng. 2 T/R Eng. 3 T/R Gen APU Isolation Eng. 1 Ailerons Spoilers Rudder Elevators THS Slats/Flaps Gear actuation Steering Braking EDP L & R o/b & m/b 2, 4, 6, 8 (L&R) Upper & Lower LOB & ROB Pitch trim 1 Slats Flaps Nose & Wing Nose Wing Gear Brakes Green System PV PMV PMF T/R EMP Eng. 2 Alt. Ener Body Gear Brakes 1, 3, 5, 7 (L &R) Upper & Lower LIB & RIB Flaps Body Gears Yellow System PMF EDP Alt. Ener Pitch trim 2 PMV EMP Eng. 3 Eng. 4 L & R i/b & o/b PV
Nose gear & fuselage studies STATUS 11 STATUS 14 Frame 11 Frame 12 Frame 10 150 100
5 post main gear group for growth 4 post main gear group for 560 & 590 t 4 wheel Wing gear 6 wheel Body gear 5 post main gear group for growth 560t & 590t MTOW bay gives extra cargo volume with good central fuselage structure compatible with pavement loading (being demonstrated by PEP) growth
TACS : cameras, video switches Avionics for A380 AFDX Ethernet Network Ethernet network FCGC FCSC SFCC Engines Flight control FADEC AFDX network ADIRU MMR VOR DME TACS : cameras, video switches Radio comm. OMT AWLU HFDR, VDR, SATCOM SELCAL, RAMP, AMU... Ethernet network Sensors R/A Recorders Ctrl & Displays CVR, DFDR WACS cockpit NCR std by SATCOM LEO/MEO ACMF FDIF IOM ACR SCI FW FM ATC Surveillance Cockpit FCDC ACAS, TAWS, W/R Avionics server energy fuel&LG connectors ELM ECM IRDC LG PHC WHC GCU LG LG CBM HSyM APU GCU FQI/ FQI/ BC BC FuM FuM SC SC TP TP Utilities . Cabin Intercom Data -CIDS Smoke detect. Water/waste ctl LRU Air Gene- ration / Temp Contr . Cabin Pressure Ventalation Air Gener. Temp ctl Bleed mon. Overheat detect. Cabin Pressure Ventil. Ctl Avioncs cooling . . . Cabin server IFE Cabin
On Board Information Flight Deck Info Cabin Services Maintenance Apps Gate Link Passenger Terminals Crew Station IFE FS Router VHF Flight Deck Info Cabin Services Maintenance Apps IFE Charts and Maps Weather Electronic Library Electronic log book Passenger Manifest Consumables Tracking Financial Transactions Cabin Logbook, Checklist FMS Nav Data Base Operational S/W Loading Fault Correction Guide Quick Access Recorder Direct TV Internet
A3XX Onboard Maintenance System concept Terminals Cockpit, cabin, Portable Uplink Downlink Control, reporting display, customisation programming Recording Printing Onboard Information Network Maintenance Electronic documentation Consultation Link Centralized Maintenance Aircraft Condition Monitoring Data Loading Acquisition and processing S/W and data bases loading Fault acquisition Tests activation BITE A/C Systems and engines Ops. data
A3XX Scenario for Advanced Materials Upper Floor Beams: CFRP for Pax version, Aluminium for freighter version Upper Fuselage Panels: Fibre Laminates (GLARE) Empennage: CFRP Outer Wing: Metal bonded Rear Pressure Bulkhead: CFRP Wing Panels: Advanced aluminium alloys Center Wing Box: CFRP Fixed Wing Leading Edge: Thermoplastic J-Nose Lower Fuselage Panels: Laser Beam Welded aluminium alloys