Comparer des fractions

Slides:



Advertisements
Présentations similaires
Fractions et longueurs
Advertisements

Numératio n Arrondir un nombre décimal CM
Progression numération CM Séquences Socle commun Compétences du palier 2 ProgrammesObjectifs d’apprentissage N1 Distinguer chiffre et nombre.
Conjuguer au passé simple
Conjuguer au passé composé
Mathématiques – Numération
La phrase – Les types de phrases
Reconnaître les solides
Lire, écrire et décomposer les nombres jusqu’à
Mathématiques – Numération
Additionner des nombres entiers
Additionner des nombres décimaux
Le verbe : infinitif, groupe, temps, mode…
Connaitre les unités de mesures d’aires
Objectif de la séance Aujourd'hui, nous allons apprendre à utiliser et convertir des mesures de masse.
Les accords dans la phrase
LES FRACTIONS Dans ce diaporama, nous allons revoir comment:
Évaluation Numération
Symétrie axiale sur papier quadrillé et uni
Vocabulaire CM Les niveaux de langage.
Lire, écrire et décomposer les nombres jusqu’à
Progressions calcul CM
Aujourd'hui, nous allons apprendre à convertir des mesures de longueur
Lire, écrire et décomposer les nombres décimaux
Diviser par un entier à deux chiffres
Division avec quotient décimal
Mesure CM Calculer les durées.
La Multiplication De fractions
Se repérer sur un quadrillage
Aujourd'hui, nous allons apprendre ce que sont des fractions.
Familles de mots – préfixes et suffixes
Mathématiques – Numération
Comparer et encadrer des nombres jusqu’à
Connaître les fractions décimales
Présentation de l'objectif
Passer de l’écriture fractionnaire aux nombres décimaux
Numération CM1 entrainement 1 a ceinture blanche Écris en chiffres
Lire, écrire et décomposer les nombres décimaux
Soustraire des nombres décimaux
Quelle heure est-il?.
Quelle heure est-il? Il est….
Symétrie axiale sur papier quadrillé
cent Ecrire en chiffres
Lire, écrire et décomposer les grands nombres
Les fractions.
Conjuguer au futur simple de l’indicatif
Connaitre les unités de mesures de longueur
Calculer des périmètres
Comparer et encadrer les grands nombres
Multiplier des entiers par un nombre à plusieurs chiffres
Multiplier des entiers par un nombre à un chiffre
Mesurer et comparer des aires
Connaitre les unités de mesures de masse
Décomposer et encadrer les fractions
Connaître les équivalences entre fractions
Connaître et tracer des cercles
Multiplier des décimaux
Tracer et reproduire des angles
Connaître les multiples et diviseurs d’un nombre.
Suivre un programme de construction
Lire, écrire et décomposer les nombres jusqu’à
Les numéros.
La phrase simple et la phrase complexe
Quelle heure est-il? Il est midi/ minuit et quart.
Associe les heures aux horloges correspondants: Il est zero heure quinze. Il est six heures quarante. Il est douze heures trente. Il est vingt et une heures.
Comparer des fractions
14.00.
Numération : Les fractions
Les nombres
Mesure CM Les durées.
Transcription de la présentation:

Comparer des fractions Numération CM www.laclassedemallory.com Comparer des fractions

Objectif de la séance Aujourd’hui, nous allons travailler en numération. Nous allons apprendre à comparer des fractions. Il est utile de savoir comparer des fractions entre elles ou à l’unité. Ce travail sera poursuivi au collège.

Dans quelle matière va-t-on travailler? Qu’allons-nous apprendre?

Pré-requis : savoir, lire, écrire et représenter des fractions Quelle est la fraction représentée par la partie colorée ? Ecris sous la forme d’une fraction : neuf tiers / vingt-quatre demis / treize sixièmes / quatre quarts…

Comparer des fractions de même dénominateur Si deux fractions ont un même dénominateur, la plus grande est celle qui a le plus grand numérateur. < 3 4 7 4 car 3<7

Compare : 3/4 …………. 5/4 3/2 …………. 2/2 2/3 …………. 1/3 3/6 …………. 5/6

Comparer des fractions de même numérateur Si deux fractions ont un même numérateur, la plus grande est celle qui a le plus petit dénominateur (les parts sont plus grandes) 1 2 > 1 4 car 2<4

Compare : 3/4 …………. 3/2 1/2 …………. 1/3 2/6 …………. 2/8 3/8 …………. 3/2

Vers la 6ème : Comparer des fractions de dénominateur différents Pour comparer deux fractions, il faut quelquefois les mettre sous le même dénominateur, en utilisant les équivalences entre les fractions. x2 Comparons par exemple 3/2 et 5/4. Je transforme 3/2 en un nombre de quarts: = 3 2 6 …. 4 Je n’ai plus qu’à comparer 6/4 et 5/4 : x2 > > 6 4 5 4 3 2 5 4 donc:

Compare : 1/4 …………. 3/2 1/2 …………. 4/6 2/3 …………. 4/6

En résumé