Méthodes épidémiologiques appliquées à la Santé Publique

Slides:



Advertisements
Présentations similaires
Analyse critique d'article Etudes non interventionnelles
Advertisements

Développement d’un médicament
Indicateurs de Suivi, Risques & Mesure d’Associations
Introduction to Impact Evaluation training HSRC, Pretoria, South Africa April 10, 2008 Induction Causale Florence Kondylis Initiative pour lévaluation.
Introduction à l’épidémiologie et à la recherche clinique
But de la lecture critique
Quelques clés pour une lecture critique des essais thérapeutiques
Analyse d’articles étude des biais
Inférence statistique
Echantillonnage Professeur Francis GUILLEMIN > Ecole de santé publique - Faculté de Médecine.
Epidémiologie : types d’enquêtes
DEME - La méthode d’enquête – introduction
Dr DEVILLE Emmanuelle J D V 12/07/2006
Epidémiologie Les études de cohorte.
Estimation de la survie comparaison des courbes de survie FRT C3.
Les Biais Item 14°) Relever les biais discutés. Rechercher d’autres biais non pris en compte dans la discussion et Relever leurs conséquences Dr Marie-Christine.
Schémas d’étude.
Introduction à l’Epidémiologie
Tableau‚ Summary of Findings‘
Traitement de données socio-économiques et techniques d’analyse :
Rôle des Facteurs de confusion dans l’interprétation des résultats d’une association Dr J Ateudjieu J Ateudjieu. Cours Epiconc Master's Epi et SP Université.
Paul-Marie Bernard Université Laval
Méthodes en épidémiologie (SPUB009)
Les variables au plan fonctionnel
Objectifs du chapitre 7: Plans corrélationnels
Howell, Chap. 1 Position générale
Paul-Marie Bernard Université Laval
L’Analyse de Variance 1 Généralités Le modèle Calculs pratiques
Algorithme de lecture critique: validité interne
Interaction entre les possibles facteurs de risque
Méthodes épidémiologiques appliquées à la Santé Publique
La corrélation et la régression
La corrélation et la régression
Structure discriminante (analyse discriminante)
Objectifs du chap. 5: Plans de recherche classiques
Outils de la gestion des risques Rencontre ARLIN/ARS/Ecoles
Épidémiologie Notions élémentaires Réalisation pratique d’un enquête
Analyse de survie.
* 16/07/96 Caractéristiques maternelles et infantiles associées à l’accident ischémique artériel cérébral périnatal de l’enfant *
Epidémiologie Dr Lydia Guittet.
Micro-intro aux stats.
Les Techniques d’enquête quantitative
Intervalles de confiance pour des proportions L’inférence statistique
Conférences Paris Descartes
Études écologiques.
BIAIS Epidémiologie Essai Test diag. Intervention Sélection Sélection*
VARIABLES ET MESURES DE FREQUENCES Pr. KELLIL M 1.
I NSTITUT DE V EILLE S ANITAIRE 1 Synthèse des évaluations d'impact sanitaire : Apheis, Enhis Jean-François JUSOT InVS/DSE/Cire Rhône-Alpes.
* 16/07/96 Diabète gestationnel et malformations de l’appareil urinaire : une étude cas témoins en milieu hospitalier.     Avril 2013 Arnaud Seigneurin.
Lecture et présentation d’une étude pronostique
GRANDEURS ET MISÈRES DE LA MÉTA-ANALYSE Jimmy Bourque, CRDE.
Concepts en santé publique
* 16/07/96  Activité physique, masse corporelle et risque de diabète chez les hommes : une étude prospective ECN 2011 sujet 1 José Labarère *
Concepts préliminaires sur les études de recherche Population: le groupe entier de personnes ou d'objets sur lequel un chercheur veut apprendre quelque.
* 16/07/96 Cohorte des travailleurs du nucléaire à Électricité de France : mortalité des agents statutaires sur la période 1968–2003 *
Valeurs de références environnementales et évaluation de l ’impact sanitaire des installations André Cicolella, Céline Boudet,Cécile Allard Amin Kouniali,
Dr Vincent BIGE Centre de référence Mucoviscidose de Lyon
Des expériences comparatives à répartition aléatoire (autrement dit des études expérimentales aléatoires)
Facteurs de risque de contamination par le virus de l’hépatite C. Etude cas-témoin en population générale.
Enquêtes cas - témoins.
Téléphone mobile, risque de tumeurs cérébrales et du nerf vestibuloacoustique: l’étude cas-témoins INTERPHONE en France. Lecture critique d’article Décembre.
ECHANTILLONAGE ET ESTIMATION
Lecture critique d’article Mars 2014 Pr Ganry. q2. Donner un titre à l’article? Etude du statut sérologique et de l’accouchement par césarienne sur les.
EPIDEMIOLOGIE ANALYTIQUE
Tests relatifs aux variables qualitatives: Tests du Chi-deux.
ETUDES PRONOSTIQUES Pr Ganry.
Statistiques: mesures de liaisons tests d’hypothèse
Académie européenne des patients sur l'innovation thérapeutique Rôle et notions élémentaires des statistiques dans les essais cliniques.
Concepts de base: études de prévalence Deneche Imene Novembre 2015.
Lecture critique des essais cliniques. But Juger de : - La validité scientifique - L’intérêt clinique Modifier ou ne pas modifier la pratique.
Transcription de la présentation:

Méthodes épidémiologiques appliquées à la Santé Publique SPUB053 Module 2-3-4 Alain LEVEQUE Département d’Epidémiologie et Promotion de la Santé

Plan général Rappels méthodologiques Introduction : Santé Publique Épidémiologie Rappels méthodologiques Méthodes pour la description des problèmes de santé Méthodes pour l’évaluation des interventions AL2005-06 SPUB053 - MAS SP -MultiD

Des rappels et/ou…approfondissements Les mesures de fréquence / associations / impact Les types d’études Les biais et erreurs Le rôle du hasard La causalité AL2005-06 SPUB053 - MAS SP -MultiD

MESURES EN EPIDEMIOLOGIE Mesures de fréquence Mesures d’association Mesures d’impact AL2005-06 SPUB053 - MAS SP -MultiD

En épidémiologie Deux mesures de fréquence importantes : La prévalence L’incidence AL2005-06 SPUB053 - MAS SP -MultiD

Prevalence et Incidence La prévalence correspond au nombre de cas existant dans une population à un moment donné L’incidence est le nombre de nouveaux cas qui apparaissent dans une population au cours d’une période d’observation AL2005-06 SPUB053 - MAS SP -MultiD

Prevalence c’est la proportion d’individus dans une population qui présente les caractéristiques recherchées (cas de maladie, p.ex.) à un moment donné elle estime la probabilité d’être atteint d’un problème donné à un certain moment évalue l’importance du “problème de Santé Publique” à ce moment utilisée pour la planification des services de santé (infrastructures, personnel, …) AL2005-06 SPUB053 - MAS SP -MultiD

Incidence c’est un taux : il mesure le nombre de nouveaux cas (d’une maladie ou d’un état de santé) qui apparaissent dans une population donnée durant une certaine période elle mesure la probabilité qu’une personne encourt de développer la “maladie” il existe deux sortes d’incidence : l’incidence cumulée (analogue à une proportion) la densité d’incidence (analogue à une vitesse) AL2005-06 SPUB053 - MAS SP -MultiD

Formule pour l’incidence cumulée : Rapport entre le nombre de nouveaux cas survenus pendant la période d'observation, et le nombre de personnes en observation et susceptibles de devenir des cas, au début de l'étude. Il s'agit d'une proportion et d'une mesure du risque, qui doit toujours être accompagnée de la mention de la durée d'observation. Formule pour l’incidence cumulée : Nombre de nouveaux cas survenant durant une période donnée IC = Population “à risque” totale au début de la période AL2005-06 SPUB053 - MAS SP -MultiD

Formule pour la densité d’incidence : Taux qui mesure la vitesse de propagation d'une maladie ou d'un phénomène de santé. C'est le rapport entre, d'une part, les nouveaux cas survenus pendant une période de temps déterminée et d'autre part, le cumul du temps d‘exposition (temps écoulé avant la survenue de chaque nouveau cas ou avant la fin de la période d'observation des personnes susceptibles de devenir des cas mais qui ne contractent pas la maladie étudiée). Formule pour la densité d’incidence : Nombre de nouveaux cas survenant durant une période donnée DI = Total des « personnes-années » exposées pendant la période AL2005-06 SPUB053 - MAS SP -MultiD

Calcul des PERSONNES-TEMPS SPUB053 - MAS SP -MultiD

Population dynamique FERMEE Tous les membres sont identifiés au début de l ’étude, Personne ne s’ajoute, chacun est suivi jusque l’apparition du problème ou jusque la fin de la période d ’observation Population dynamique OUVERTE Pas d ’identification individuelle, entrées et sorties, ... Postulats pour le calcul d ’incidence dans une population ouverte: - équilibre (population fin étude  population début) - prévalence faible dans la population étudiée (<= 5%) - proportion des « non susceptibles » est faible AL2005-06 SPUB053 - MAS SP -MultiD

Si population importante et stable (Entrées ≈ sorties) Temps d’observation = 1 an : effectif en milieu d’année Temps d’observation plus long : (effectif début + effectif fin) / 2 AL2005-06 SPUB053 - MAS SP -MultiD

Quelques mesures particulières Espérance de vie à la naissance : nombre moyen d’années durant lesquelles un nouveau-né peut espérer vivre si les taux de mortalité par tranche d’âge, tels qu’ils ont été calculés l’année de sa naissance s’appliquaient de son vivant. Mortalité (= taux d’incidence) Taux brut de mortalité Taux spécifiques de mortalité Mortalité autour de la naissance AL2005-06 SPUB053 - MAS SP -MultiD

Taux brut de Mortalité : nombre de décès toutes causes confondues survenant dans une population durant une certaine période (svt 1 an) Nombre total de décès = ----------------------------- population milieu de période Taux spécifique de Mortalité : nombre de décès pour une cause donnée, pour un sexe donné, …survenant dans une population durant une certaine période Nbre total décès dus à la cause (accident de la route) = -------------------------------------------------- AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

L’importance des mesures STANDARDISEES Pour comparer des situations, des groupes, des populations, il est important de travailler avec des mesures de fréquence standardisées, c’est-à-dire rendues « artificiellement comparables » pour un ou plusieurs caractères épidémiologiques. Deux techniques : standardisation DIRECTE Standardisation INDIRECTE AL2005-06 SPUB053 - MAS SP -MultiD

But de la standardisation Produire des taux globaux comparables qui tiennent compte de la composition des strates (le taux global brut est un bon paramètre de réduction des données mais n ’est pas un bon paramètre pour la comparaison) Ces taux sont donc ajustés pour des différences entre les populations comparées : age, genre, caractéristiques sociales, … ! Ces taux deviennent fictifs puisqu’ils correspondent à des hypothèses de travail permettant une comparaison AL2005-06 SPUB053 - MAS SP -MultiD

Standardisation : exemple En prenant comme exemple de phénomène observé le taux de mortalité et comme facteur de confusion l'âge, la méthode directe consiste à appliquer les taux spécifiques de mortalité (par classe d'âge) de chacune des populations comparées à une population de référence commune (population "type"), éliminant ainsi l'effet de la structure d'âge sur les taux de mortalité. Dans l'exemple ci-dessous, on décide de comparer le taux de mortalité féminine dans le Pas-de-Calais à celui du Var. La population de référence prise en compte est celle de la France. 9,89 /°° 10,46 /°° 9,39 /°° AL2005-06 SPUB053 - MAS SP -MultiD

Standardisation : exemple Dans cet exemple, le taux brut de mortalité (donc avant standardisation) est de 9,39 pour 1000 habitants dans le PDC, et de 10,46 dans le Var, ce qui peut surprendre étant donnée la notion bien connue de surmortalité dans le nord du pays. Le taux brut de mortalité de la population de référence (la France) est de 9,89 pour 1000. En réalité, les structures d'âge sont différentes dans les populations de ces 2 départements, celle du Var étant nettement plus âgée que celle du PDC. La standardisation directe aboutit à un taux standardisé de 11,06 dans le PDC, et de 9,01 dans le Var. 9,89 /°° 9,01 /°° 11,06 /°° AL2005-06 SPUB053 - MAS SP -MultiD

Standardisation : exemple La standardisation indirecte aboutit à un ICM(*) de 1,121 dans le PDC et de 0,907 dans le Var. Pour obtenir les taux standardisés par la méthode indirecte, on réalisera les calculs suivants: Taux standardisé (PDC) = 1,121 x 9,89 = 11,09. Taux standardisé (Var) = 0,907 x 9,89 = 8,97. Tous les résultats obtenus sont donc concordants, quelle que soit la méthode de standardisation retenue. L'utilisation de taux bruts de mortalité donnait une mauvaise idée du classement de ces 2 départements du fait du rôle de l'âge sur les données. La mortalité est en fait plus élevée dans le PDC que dans le Var. (*) Indice comparatif de mortalité = SMR en anglais AL2005-06 SPUB053 - MAS SP -MultiD

MESURES EN EPIDEMIOLOGIE Mesures de fréquence Mesures d’association Mesures d’impact AL2005-06 SPUB053 - MAS SP -MultiD

Les Mesures d’association Recherche d’une valeur qui mesure l’association, la relation entre une exposition (par exemple l’alcool) et un problème de santé (accident de la route) Les plus utilisées : Risque relatif Rapport de cote AL2005-06 SPUB053 - MAS SP -MultiD

Qu’est-ce que le RISQUE ? Probabilité qu’un événement survienne dans une population donnée Probabilité:  0 à 1 Exprimé sous la forme d’un TAUX : càd nombre d’événement / pop.donnée, pdt période donnée (ex: 3 pour 1000 sur 5ans) Événement = mortalité, morbidité, handicap,… AL2005-06 SPUB053 - MAS SP -MultiD

Point de départ : table de contingence Disposition classique de la table 2X2 EXPOSITION EFFET AL2005-06 SPUB053 - MAS SP -MultiD

L’âge de la mère est-il un facteur de risque ? Enquête prospective (un an) sur la mortalité maternelle au Niger : 1.500 décès maternels sur 60.000 naissances L’âge de la mère est-il un facteur de risque ? Décès + Décès - TOTAL <= 19 700 13.300 14.000 >19 800 45.200 46.000 Total 1.500 58.500 60.000 AL2005-06 SPUB053 - MAS SP -MultiD

Risque absolu = fréquence relative de l’événement Décès + Décès - TOTAL <= 19 700 13.300 14.000 >19 800 45.200 46.000 Total 1.500 58.500 60.000 = 1.500 / 60.000 = 0.025 = 25 pour mille AL2005-06 SPUB053 - MAS SP -MultiD

Risque absolu = fréquence relative de l’événement chez les EXPOSES Décès + Décès - TOTAL <= 19 700 13.300 14.000 >19 800 45.200 46.000 Total 1.500 58.500 60.000 = 700 / 14.000 = 0.05 = 50 pour mille AL2005-06 SPUB053 - MAS SP -MultiD

Risque absolu = fréquence relative de l’événement chez les NON EXPOSES Décès + Décès - TOTAL <= 19 700 13.300 14.000 >19 800 45.200 46.000 Total 1.500 58.500 60.000 = 800 / 46.000 = 0.017 = 17 pour mille AL2005-06 SPUB053 - MAS SP -MultiD

Risque Relatif (RR) = Rapport entre le risque dans le groupe présentant le FR et le risque dans le groupe ne présentant pas le FR = mesure de la force de l’association entre FR et événement = 50 pour mille / 17 pour mille = 2.94 Absence de relation : RR=1 Relation d’autant plus forte que RR éloigné de 1 AL2005-06 SPUB053 - MAS SP -MultiD

RAPPORT DE COTES (ODDS RATIO) Rapport entre la COTE de maladie chez les exposés et la COTE de maladie chez les non exposés OU Rapport entre la COTE d’exposition chez les malades et la COTE d’exposition chez les non malades AL2005-06 SPUB053 - MAS SP -MultiD

Qu’est ce qu’une COTE (ODDS) Définition: COTE = rapport entre la probabilité de survenue d’un événement et celle de la survenue d’un autre événement (le plus souvent opposé au premier) On considérera la cote comme le rapport : EVENEMENT / 1- EVENEMENT AL2005-06 SPUB053 - MAS SP -MultiD

Cote de MALADIE chez les EXPOSES = Cote de MALADIE chez les (a/a+b) / (b/a+b) = A / B MALADIE + MALADIE - EXPOSE A B A+B NON EXPOSE C D C+D A+C B+D A+B+C+D Cote de MALADIE chez les Non exposes= (c/c+d) / (d/c+d) = C / D AL2005-06 SPUB053 - MAS SP -MultiD

Cote d’expo.chez les MALADES = NON MALADES= (b/b+d) / (d/b+d) = B / D Cote d’expo.chez les MALADES = (a/a+c) / (c/a+c) = A / C MALADIE + MALADIE - EXPOSE A B A+B NON EXPOSE C D C+D A+C B+D A+B+C+D AL2005-06 SPUB053 - MAS SP -MultiD

Rapport de COTE Rapport de COTE = A.D / B.C A B A+B C D C+D A+C B+D MALADE NON MALADE EXPOSE A B A+B NON EXPOSE C D C+D A+C B+D A+B+C+D Rapport de COTE = A.D / B.C (produit croisé) AL2005-06 SPUB053 - MAS SP -MultiD

Dans le milieu des paris et jeux On met en avant l’échec Cote du cheval A : 97.116 / 2.884 = 33.7 Cheval A est à 34 CONTRE 1 Gagne Perd Total des paris Cheval A 2884 97116 100.000 Cheval B 36000 64000 Cote du cheval B : 64.000 / 36.000 = 1.8 Cheval B est à 2 CONTRE 1 AL2005-06 SPUB053 - MAS SP -MultiD

MESURES EN EPIDEMIOLOGIE Mesures de fréquence Mesures d’association Mesures d’impact AL2005-06 SPUB053 - MAS SP -MultiD

Les mesures d’impact Risque attribuable Fraction étiologique du risque Chez les exposés Dans la population générale AL2005-06 SPUB053 - MAS SP -MultiD

L’âge de la mère est-il un facteur de risque ? Enquête prospective (un an) sur la mortalité maternelle au Niger : 1.500 décès maternels sur 60.000 naissances L’âge de la mère est-il un facteur de risque ? Décès + Décès - TOTAL <= 19 700 13.300 14.000 >19 800 45.200 46.000 Total 1.500 58.500 60.000 R.absolu = 700 / 14.000 = 0.05 = 50 pour mille = 800 / 46.000 = 0.017 = 17 pour mille AL2005-06 SPUB053 - MAS SP -MultiD

Risque attribuable (à l’exposition) C’est l’excès de risque qui peut être expliqué par la présence du FR (sous-entendu qu’il y a une relation causale entre FR et ISSUE) = Incidence exposé – Incidence non exposés Dans notre exemple de la mortalité maternelle : = 0.050 – 0.017 = 0.033 = 33 pour mille La mortalité maternelle attribuable au jeune âge est de 33 pour mille Le « surplus » de mortalité maternelle attribuable au jeune âge est de 33 pour mille Cette valeur indique « le nombre de cas » qui pourraient être évités en l’absence d’exposition. AL2005-06 SPUB053 - MAS SP -MultiD

Fraction étiologique du risque (FER) Risque attribuable exprimé en pourcentage Il estime la proportion de cas de « maladie » imputable à l’exposition chez les sujets exposés. Il estime la proportion des cas qui pourraient être évités en éliminant l’exposition FER= (R.Att. / Incid. Exposés) x 100 AL2005-06 SPUB053 - MAS SP -MultiD

FER= (R.Att. / Incid. Exposés) x 100 Dans notre exemple : FER= (R.Att. / Incid. Exposés) x 100 = [(0.050 – 0.017) / 0.050] x 100 = 66% Si le jeune âge est responsable de décès maternel (relation causale), environ 66% des décès maternels survenant chez des femmes de moins de 19 ans sont imputables à ce jeune âge et pourraient être évités si l’accouchement ne survenait pas avant 19 ans. AL2005-06 SPUB053 - MAS SP -MultiD

Risque attribuable d’une population (RAP) C’est l’excès de cas de « maladie » imputable à l’exposition, au niveau de l’ensemble de la population étudiée (exposés et non exposés) = Risque Attribuable à une Population (RAP) (sous-entendu qu’il y a une relation causale entre FR et ISSUE) Deux modalités de calculs: 1) RAP = Incidence totale – Incidence non exposés Notre exemple = 0.025 – 0.017 = 0.008 = 8 pour mille 2) RAP = R Att x prévalence du FR Notre exemple = 0.033 x (14.000/60.000) = 7.7 pour mille AL2005-06 SPUB053 - MAS SP -MultiD

RAP exprimé en pourcentage Fraction étiologique du risque pour l’ensemble des sujets étudiés (FER pop) RAP exprimé en pourcentage Il estime la proportion de cas de « maladie » imputable à l’exposition parmi l’ensemble des sujets étudiés (exp et non exp). Il estime l’impact pour l’ensemble de la population des cas qui pourraient être évités en éliminant l’exposition FERpop = (RAP / Incid. pop) x 100 AL2005-06 SPUB053 - MAS SP -MultiD

Dans notre exemple : FER pop = (0.008 / 0.025) x 100 = 32 % Si le jeune âge est responsable de décès maternel (relation causale), environ 32% des décès maternels sont imputables à ce jeune âge et pourraient être évitées si l’accouchement ne survenait pas avant 19 ans. AL2005-06 SPUB053 - MAS SP -MultiD

A noter : RR, RC : recherche étiologique, recherche d’associations causales R Att, FER : estimation d’impact pour les individus à risque RAP, FER pop : estimation d’impact pour une communauté  aide au choix de priorités AL2005-06 SPUB053 - MAS SP -MultiD

Relation entre RR, FR, R Att. AL2005-06 SPUB053 - MAS SP -MultiD

Relation entre RR, FR, R Att. AL2005-06 SPUB053 - MAS SP -MultiD

Relation entre RR, FR, R Att. Si Facteur de Risque est fréquent mais association faible (RR petit), son impact (R Att, FER) sera plus élevé que si FR peu fréquent et RR élevé Important pour l’aide à la décision (sans oublier la prise en compte de la VULNERABILITE du facteur de risque) AL2005-06 SPUB053 - MAS SP -MultiD

Des rappels et/ou…approfondissements Les mesures de fréquence / associations / impact Les types d’études Les biais et erreurs Le rôle du hasard La causalité AL2005-06 SPUB053 - MAS SP -MultiD

Le chercheur La finalité La « durée » Le « sens temporel » transversale transversale descriptive Études d’observation longitudinale longitudinale prospective analytique longitudinale rétrospective Études Expérimentales (ou quasi) analytique longitudinale prospective AL2005-06 SPUB053 - MAS SP -MultiD

Des études spécifiques… OBSERVATION INTERVENTION descriptive analytique expérimentale Quasi-expérimentale Essais cliniques randomisés Essais communautaires Transversale Longitudinale Écologique Cohorte Cas-Témoins Écologique Essais cliniques non randomisés Essais communautaires non randomisés AL2005-06 SPUB053 - MAS SP -MultiD

Des études spécifiques… OBSERVATION INTERVENTION descriptive analytique expérimentale Quasi-expérimentale Essais cliniques randomisés Essais communautaires Transversale Longitudinale Écologique Cohorte Cas-Témoins Écologique Essais cliniques non randomisés Essais communautaires non randomisés AL2005-06 SPUB053 - MAS SP -MultiD

Les études descriptives AL2005-06 SPUB053 - MAS SP -MultiD

Objectifs des études descriptives Décrire l’importance d’un problème de santé Évaluer les interventions menées Aide à la prise de décision en médecine clinique Orienter la recherche étiologique AL2005-06 SPUB053 - MAS SP -MultiD

Principaux types d’études descriptives Étude de cas/série de cas Études écologiques (corrélationnelles) Études descriptives sur échantillon de population Abordées en détail dans le module 5 AL2005-06 SPUB053 - MAS SP -MultiD

Des études spécifiques… OBSERVATION INTERVENTION descriptive analytique expérimentale Quasi-expérimentale Essais cliniques randomisés Essais communautaires Transversale Longitudinale Écologique Cohorte Cas-Témoins Écologique Essais cliniques non randomisés Essais communautaires non randomisés AL2005-06 SPUB053 - MAS SP -MultiD

Études de cohorte AL2005-06 SPUB053 - MAS SP -MultiD

Étude de cohorte Au moins deux groupes Exposés : Non exposés : Choix d’un groupe particulièrement exposé Accessibilité Motivation à participer Groupes intéressants: Mutuelles, assurances Groupes professionnels Femmes enceintes Volontaires Plusieurs groupes d’exposition à des degrés variables (dose-effet) Non exposés : Apportent une information sur la fréquence attendue de la maladie dans un groupe de sujets « en tous points comparables » au groupe des exposés à l’exception du fait qu’ils ne sont pas exposés. Proviennent de la même population que les exposés AL2005-06 SPUB053 - MAS SP -MultiD

Données sur l’exposition: Collecte et follow-up Données sur l’exposition: Définition claire de l’exposition (Intensité, Durée, Régularité, Variabilité) Sources d’information (registre, participants, examens médicaux, etc. ) Changement d’exposition durant l’étude (ex: tabac) Fiabilité des mesures d’exposition : si possible des mesures objectivables AL2005-06 SPUB053 - MAS SP -MultiD

Données sur l’incidence: Collecte et follow-up Données sur l’incidence: Rythme et durée : Le même dans les différents groupes Dépend évidemment du problème étudié : Suivi long si latence longue Parfois suivi très bref (exemple étude APGAR et mortalité) Qui collecte les données : Investigateur Services de santé Patients eux-mêmes Certif de décès, autopsie, etc. Critères de diagnostics ( capital en multicentrique) AL2005-06 SPUB053 - MAS SP -MultiD

Mesures d’associations (RR, RA, FER,etc) Analyse des résultats Mesures d’associations (RR, RA, FER,etc) Risque relatif : si incidence cumulée (risk ratio) Rapport des taux : si densité d’incidence (rate ratio) Rôle du hasard ? Tests de signification statistique Comparaison de moyenne Comparaison de proportions Analyse de survie etc… AL2005-06 SPUB053 - MAS SP -MultiD

Exemple: Relation entre le score d’apgar à 10’ et le risque de décès de l’enfant durant sa première année de vie, chez les enfants dont le poids de naissance est supérieur à 2500 gr. Deux groupes d’enfants : Groupe 1: enfants ayant eu un score d’APGAR de 0 à 3 (= EXPOSE) Groupe 2 : enfants ayant eu un score d’APGAR de 4 à 6 (= NON EXPOSE) Groupe 1: n = 122 Groupe 2 : n = 345 Au total : 85 décès dont 43 dans le groupe 2

RAbs exposé : 42/122 = 34,4% Rabs non exposé : 43/345 = 12,5% DECES SURVIE TOTAL APGAR 0-3 42 80 122 4-6 43 302 345 Total 85 382 467 RAbs exposé : 42/122 = 34,4% Rabs non exposé : 43/345 = 12,5% RR : 34.4 / 12.5 = 2.8 AL2005-06 SPUB053 - MAS SP -MultiD

Donner un « sens statistique » à cette association ? 1. Intervalle de confiance autour du RR [1.9 ; 4.1 ] 2. test d’hypothèse Ho : RR dans la population = 1 Ha : RR dans la population ≠ de 1 α = 5% chi carré : = 29.2 ; p=0.000001 AL2005-06 SPUB053 - MAS SP -MultiD

Des problèmes très importants Non répondants : Les non réponses sont SELECTIVES Les éviter : Plan de communication avant le démarrage Fidéliser les participants Les prendre en compte : Informations minimales sur les non répondants pour comparaison des caractéristiques socio-démo.,etc. AL2005-06 SPUB053 - MAS SP -MultiD

Des problèmes très importants Perdus de vue : Les perdus de vue sont SELECTIFS Les éviter : Fidéliser les participants Rendre l’investigation la plus légère possible Les prendre en compte : Informations minimales sur le devenir (?) AL2005-06 SPUB053 - MAS SP -MultiD

Avantages et désavantages Calcul RISQUE Info sur incidence Pas d’ambiguïté temporelle Expositions rares Occurrence de plusieurs problèmes de santé Alcool : cirrhose, accidents, polynévrites, etc. Dose-effet Temps Coût Taille échantillon Non adapté pour pathologies rares Perte follow-up Changement d’exposition durant la période de suivi AL2005-06 SPUB053 - MAS SP -MultiD

Études à visée analytique Sélection de MALADE (CAS) Études CAS-TEMOINS Études à visée analytique Sélection de MALADE (CAS) Constitution d’un groupe de TEMOINS qui ne présentent pas le problème Recherche RETROSPECTIVE de l’exposition AL2005-06 SPUB053 - MAS SP -MultiD

Plan d’étude AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

Sélection des cas et des témoins Définition claire et précise de la maladie Identification de la population source Source : Hôpitaux, MG, etc. Population générale (dépistage) TEMOINS: C’est le groupe qui permet de voir la fréquence du Facteur de risque quand on ne présente pas la maladie. Choisi dans la même population que les CAS « en tout point comparable » aux cas (sauf MALADIE) Appariement individuel Stratification Etc. AL2005-06 SPUB053 - MAS SP -MultiD

Collecte des informations sur l’exposition Sur des facteurs confondants potentiels Informations obtenues de la même façon dans les deux groupes Source : interview personne / famille Dossier Registre état civil, etc. Dossiers professionnels Biais de mémorisation +++ AL2005-06 SPUB053 - MAS SP -MultiD

Cote d’exposition chez les CAS Cote d’exposition chez les témoins Analyse Cote d’exposition chez les CAS Cote d’exposition chez les témoins Rapport de cote Statistique : intervalle de confiance autour de l’OR Chi carré AL2005-06 SPUB053 - MAS SP -MultiD

Avantages et désavantages Maladies rares Maladies avec latence longue Taille d’échantillon plus limitée Données d’accès facile Pas de problèmes éthiques: déjà malade On ne détermine pas le risque Peu intéressant pour expositions rares Biais de sélection ++ Validation des données (mémorisation) AL2005-06 SPUB053 - MAS SP -MultiD

Calcul des RAPPORTS Dans une étude de cohorte : RISQUE RELATIF : Risque Exposé / Risque non exposé RAPPORT DE COTE de maladie (disease odds ratio) : Cote chez les exposés / cote chez les Non Exp. = (a/b) /(c/d) = a.d / b.c (produit croisé) AL2005-06 SPUB053 - MAS SP -MultiD

Calcul des RAPPORTS Dans une étude cas-témoins : RISQUE RELATIF RC de maladie RAPPORT DE COTE d’Exposition Cote d’exposition chez les cas / cote d’exposition chez les témoins = (a/c) / (b/d) = a . d / b . C (= produit croisé) AL2005-06 SPUB053 - MAS SP -MultiD

Des études spécifiques… OBSERVATION INTERVENTION descriptive analytique expérimentale Quasi-expérimentale Essais cliniques randomisés Essais communautaires Transversale Longitudinale Écologique Cohorte Cas-Témoins Écologique Essais cliniques non randomisés Essais communautaires non randomisés AL2005-06 SPUB053 - MAS SP -MultiD

Les études d’intervention

Études d’intervention Types d’étude qui reproduisent le plus fidèlement les conditions des expériences en laboratoire L’enquêteur exerce un contrôle direct sur l’exposition et sur l’affectation des sujets dans les groupes  études observation où les participants eux-mêmes déterminent cette affectation Bases très solides pour tester les hypothèses Problèmes éthiques importants AL2005-06 SPUB053 - MAS SP -MultiD

Études expérimentales Exposition est imposée !!! Dans des conditions NON CONTROLEES : pas de sélection de sujets; tous ceux qui « présentent le besoin » font partie de l’expérience Exemple: vaccination dans une population …diminution incidence maladie Dans des conditions CONTROLEES : Essais cliniques Essai sur le terrain Interventions communautaires Dans les conditions naturelles : Essais accidentels (accidents nucléaire,…) AL2005-06 SPUB053 - MAS SP -MultiD

Types d’études d’intervention Essais cliniques : but = évaluation de l’efficacité d’un médicament ou d’un traitement Concernent les plus souvent des maladies Sont le plus souvent menés en structure de soins Essais sur le terrain : Soit à l’échelle de l’individu : unité statistique = individu soit à l’échelle du groupe : unité statistique = groupe soit à l’échelle d’une communauté entière: unité statistique = communauté AL2005-06 SPUB053 - MAS SP -MultiD

Seront vues plus en détails lors de l’abord de « l’évaluation des interventions en santé publique » SPUB053 - MAS SP -MultiD

Des rappels et/ou…approfondissements Les mesures de fréquence / associations / impact Les types d’études Le rôle du hasard Les biais et erreurs La causalité AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage En épidémiologie, on étudie quelque fois des populations entières. analyse des décès et des naissances (statistiques démographiques) certains registres exhaustifs c’est le cas des données de recensement ... MAIS le plus souvent on recourt à la méthode des sondages : on y étudie un échantillon de cette population le plus souvent, cet échantillon doit être représentatif de la population visée AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Pour constituer un échantillon le plus représentatif possible de la population enquêtée (tous les individus doivent avoir la même probabilité de figurer dans l'échantillon): Sondage empirique: l'enquêteur choisit les individus formant l'échantillon en fonction de certaines caractéristiques (âge, sexe, profession), afin de refléter le plus possible la population que l'on désire étudier. Méthode forcément biaisée. Sondage aléatoire: repose sur le tirage au sort (randomisation) effectué à partir d'une base de sondage (annuaire, liste électorale...). AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Le sondage aléatoire peut être: élémentaire : les sujets sont tirés directement dans la population étudiée Ex:on numérote les individus d'une population de 2000 personnes de 1 à 2000, et on tire au sort 100 numéros AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage aléatoire SIMPLE population N Echantillon n Echantillonnage aléatoire SIMPLE AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Le sondage aléatoire peut être: systématique : au lieu de numéroter les 2000 personnes, on en tire une au sort parmi les 20 premières, puis on "saute" de 20 en 20 pour arriver à un total de 100 Plus rapide, mais attention aux variations périodiques); AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage SYSTEMATIQUE population Le PAS : k = N / n 1 N k l l+k l+2k l+3k l+ (n-1)k Nbre aléatoire n Echantillon Echantillonnage SYSTEMATIQUE AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Le sondage aléatoire peut être: En grappes : Ex:l'ensemble des foyers résidant dans des villages tirés au sort: un village est une grappe de foyers qui sont des grappes d'individus. Très utilisés car très pratiques, mais attention à l'homogénéité des individus dans une même grappe : mêmes habitudes alimentaires dans un foyer... AL2005-06 SPUB053 - MAS SP -MultiD

G grappes mutuellement exclusives et exhaustives Echantillonnage en GRAPPES (clusters) Population N G grappes mutuellement exclusives et exhaustives Echantillon n G grappes mutuellement exclusives et exhaustives sélectionnées par tirage aléatoire simple, systématique ou avec probabilité proportionnelle à la taille AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Le sondage aléatoire peut être: stratifié : plusieurs tirages, chacun étant réalisé dans une sous-population plus homogène quant au facteur étudié. Ex:dans une enquête sur le recours aux soins, on subdivisera la ville concernée en 3 secteurs: milieu aisé, classe moyenne, classe populaire et on fera un tirage dans chacun. AL2005-06 SPUB053 - MAS SP -MultiD

S strates mutuellement exclusives et exhaustives Echantillonnage aléatoire STRATIFIE Population N S strates mutuellement exclusives et exhaustives Echantillon n S strates mutuellement exclusives et exhaustives dont les sujets ont été sélectionnés par tirage aléatoire simple AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Si l'échantillon n'est pas représentatif de la population sur laquelle doit porter l'étude, il en résulte des biais qui doivent faire remettre en question le mode d'échantillonnage et la représentativité des résultats obtenus. Si l'échantillon n'est pas suffisamment grand, il risque d ’y avoir manque de précision pour les estimateurs étudiés. AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Population-cible : celle dont on voudrait connaître les caractéristiques Ensemble des éléments visés, en principe, par une problématique scientifique. Il est fréquent que l’échantillonnage ne puisse pas couvrir toute la population cible. “Target population”. Population échantillonnée (ou population statistique) : celle que l ’on pourra effectivement étudier, et à laquelle se rapporteront les résultats de l ’étude AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Echantillon : sous-ensemble de la population échantillonnée; à condition de répondre aux exigences de représentativité, les paramètres mesurés dans cet échantillon pourront servir d ’estimateurs pour la population échantillonnée Unité d ’échantillonnage : élément de l ’échantillon sur lequel porte la mesure et l ’observation: unité permettant de construire un échantillon en vue d'une enquête. (= unité statistique) AL2005-06 SPUB053 - MAS SP -MultiD

Résultats obtenus sur un échantillon: peu intéressant Ce que l ’on veut: utiliser ces résultats pour une population AL2005-06 SPUB053 - MAS SP -MultiD

Echantillonnage Inférence statistique

Echantillon Population

Introduction à la notion de fluctuation d ’échantillonnage population Inférence statistique échantillon échantillonnage AL2005-06 SPUB053 - MAS SP -MultiD

Echantillon 2 Echantillon 3 Echantillon n Echantillon 1 Population

Au départ d ’une même population: nombreux échantillons différents de même taille n paramètre (moyenne, médiane, proportion, …) varie d ’échantillon à échantillon variations suivent une distribution de probabilité AL2005-06 SPUB053 - MAS SP -MultiD

Inférence statistique Deux approches principales pour l ’inférence: inférence par les TESTS STATISTIQUES inférence par INTERVALLE DE CONFIANCE Voir STAT AL2005-06 SPUB053 - MAS SP -MultiD

? AL2005-06 SPUB053 - MAS SP -MultiD

Exemple: Relation entre le score d’apgar à 10’ et le risque de décès de l’enfant durant sa première année de vie, chez les enfants dont le poids de naissance est supérieur à 2500 gr. Deux groupes d’enfants : Groupe 1: enfants ayant eu un score d’APGAR de 0 à 3 (= EXPOSE) Groupe 2 : enfants ayant eu un score d’APGAR de 4 à 6 (= NON EXPOSE) Groupe 1: n = 122 Groupe 2 : n = 345 Au total : 85 décès dont 43 dans le groupe 2

RAbs exposé : 42/122 = 34,4% Rabs non exposé : 43/345 = 12,5% DECES SURVIE TOTAL APGAR 0-3 42 80 122 4-6 43 302 345 Total 85 382 467 RAbs exposé : 42/122 = 34,4% Rabs non exposé : 43/345 = 12,5% RR : 34.4 / 12.5 = 2.8 AL2005-06 SPUB053 - MAS SP -MultiD

? AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

Erreurs aléatoires = le hasard Erreurs systématiques = BIAIS Les erreurs possibles Erreurs aléatoires = le hasard Erreurs systématiques = BIAIS Biais de sélection Biais de mesure ou d’observation AL2005-06 SPUB053 - MAS SP -MultiD

erreurs aléatoires toujours présentes Variabilité inter et intra individus erreurs aléatoires toujours présentes si ….N AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

Les BIAIS en EPIDEMIOLOGIE ERREUR SYSTEMATIQUE ===> résultats  réalité biais de sélection : utilisation de critères non comparables dans la sélection des sujets ; non réponses ou perte de vue ou abandons sélectifs   biais de mesure (ou d’information ou d’observation): naissent par des « fautes » dans le recueil / enregistrement / codification des données AL2005-06 SPUB053 - MAS SP -MultiD

Biais de Sélection Les groupes à comparer ne sont pas comparables !!   biais d’échantillonnage population « couverte » est incomplète (non réponse, non participation, perte sélective) admission sélective des sujets dans l’étude (ex:sélection à l’hôpital,...) migration sélective survie sélective ...... AL2005-06 SPUB053 - MAS SP -MultiD

Biais de mesure ou d’observation ou d’information biais d’interview techniques de mesure défaillantes et biaisées questionnaires erronés perte de mémoire sélective excès de zèle des enquêteurs … AL2005-06 SPUB053 - MAS SP -MultiD

de sélection PREVENTION DES BIAIS   de sélection cacher à l’investigateur les informations concernant ou la maladie dans les études longitudinales ou l’exposition dans les cas-temoins techniques correctes d’échantillonnage deux groupes de témoins dans les Cas-témoins suivi le plus complet dans les études longitudinales AL2005-06 SPUB053 - MAS SP -MultiD

PREVENTION DES BIAIS (2) d’observation en travaillant en aveugle / double / triple quand le plan d ’étude le permet cacher l’hypothèse de travail dans les études non expérimentales recueillir de l’information qui « n’a rien à voir » de façon à « noyer le poisson ». cacher l’appartenance aux groupes (expo/non expo, cas/témoins) pendant le codage Etc… AL2005-06 SPUB053 - MAS SP -MultiD

Lors de l ’interprétation des résultats garder en mémoire l’existence possible de biais lors de l’interprétation des résultats de l’étude.   comparer le profil des non répondants et des répondants.    il faut essayer d’estimer l’impact et la directionalité de ces biais éventuels AL2005-06 SPUB053 - MAS SP -MultiD

BIAIS ????? Exemple: Relation entre le score d’apgar à 10’ et le risque de décès de l’enfant durant sa première année de vie, chez les enfants dont le poids de naissance est supérieur à 2500 gr. Deux groupes d’enfants : Groupe 1: enfants ayant eu un score d’APGAR de 0 à 3 (= EXPOSE) Groupe 2 : enfants ayant eu un score d’APGAR de 4 à 6 (= NON EXPOSE) Groupe 1: n = 122 Groupe 2 : n = 345 Au total : 85 décès dont 43 dans le groupe 2

? AL2005-06 SPUB053 - MAS SP -MultiD

Exemple: Relation entre le score d’apgar à 10’ et le risque de décès de l’enfant durant sa première année de vie, chez les enfants dont le poids de naissance est supérieur à 2500 gr. Deux groupes d’enfants : Groupe 1: enfants ayant eu un score d’APGAR de 0 à 3 (= EXPOSE) Groupe 2 : enfants ayant eu un score d’APGAR de 4 à 6 (= NON EXPOSE) Groupe 1: n = 122 Groupe 2 : n = 345 Au total : 85 décès dont 43 dans le groupe 2

HASARD ???? RAbs exposé : 42/122 = 34,4% DECES SURVIE TOTAL APGAR 0-3 42 80 122 4-6 43 302 345 Total 85 382 467 RAbs exposé : 42/122 = 34,4% Rabs non exposé : 43/345 = 12,5% RR : 34.4 / 12.5 = 2.8 HASARD ???? AL2005-06 SPUB053 - MAS SP -MultiD

Donner un « sens statistique » à cette association Inférence statistique 1. Intervalle de confiance autour du RR [1.9 ; 4.1 ] 2. test d’hypothèse Ho : RR dans la population = 1 Ha : RR dans la population ≠ de 1 α = 5% chi carré : = 29.2 ; p=0.000001 AL2005-06 SPUB053 - MAS SP -MultiD

? AL2005-06 SPUB053 - MAS SP -MultiD

L’interprétation des résultats d’une étude épidémiologique : Quelles questions se poser ? Le résultat n’est-il pas du à autre chose ? AL2005-06 SPUB053 - MAS SP -MultiD

La CONFUSION est inhérente à la multicausalité EXPOSITION MALADIE variable CONFONDANTE AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

Méthodes pour limiter la confusion: Lors de la préparation de l ’étude : randomisation la restriction l ’appariement Lors de l ’analyse : analyse stratifiée analyse multivariée (modélisation) standardisation AL2005-06 SPUB053 - MAS SP -MultiD

randomisation Lors de la préparation de l ’étude N ’est possible que dans les études expérimentales Est le scénario de choix Réparti aléatoirement les différences (donc les variables confondantes connues et inconnues) Si n petit, contrôle des biais de confusion moins bon : compléter par la restriction Tenir compte lors de l’analyse AL2005-06 SPUB053 - MAS SP -MultiD

Lors de la préparation de l ’étude : restriction on restreint les critères d ’admissibilité des sujets dans l ’étude (exemple: à un groupe d ’âge où l ’incidence du problème est assez constante, ...) Annule l’effet de confusion de la variable qui a été « artificiellement » éliminée Inconvénients : cette technique … limite la taille de la population éligible Rend plus difficile la construction de l’échantillon !!! la catégorie retenue peut encore présenter une certaine hétérogénéité !!! (exemple: âge) !!! La variable qui a fait l’objet de la restriction ne peut plus être prise en compte dans l’analyse AL2005-06 SPUB053 - MAS SP -MultiD

Lors de la préparation de l ’étude l ’appariement individuel L’objectif est d’avoir une répartition identique des facteurs de confusion dans les groupes étudiés Dans une étude CAS-TEMOINS, chaque témoin sera choisi avec les même caractéristique d’âge, de sexe, de profession si l’on veut apparier pour ces trois variables. Inconvénients : Difficulté de trouver les personnes pour l’appariement individuel Difficile dans les études autres que cas-témoins Impossibilité de prendre en compte dans l’analyse, la variable d’appariement AL2005-06 SPUB053 - MAS SP -MultiD

Lors de l ’analyse analyse stratifiée on contrôle la confusion en évaluant l ’association dans les catégories ou les classes de la variable potentiellement confondante ET EN CALCULANT UNE MESURE PONDEREE AL2005-06 SPUB053 - MAS SP -MultiD

Variable potentiellement STRATIFICATION maladie Facteur d’exposition Variable potentiellement confondante AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

analyse multivariée (modélisation) Lors de l ’analyse : analyse multivariée (modélisation) prise en compte simultanée de variables multiples pour une modélisation et un calcul de mesures pondérées. AL2005-06 SPUB053 - MAS SP -MultiD

Analyse multivariée : prendre en compte plus de deux facteurs Si l’on doit prendre en compte un troisième facteur X3 (puis X4, X5, X6,…)… Age de la mère Poids naiss. BB Statut socio-éco Nombre enfants profession On ne peut plus procéder par stratification notamment parce que les effectifs dans chaque strate deviennent trop petits AL2005-06 SPUB053 - MAS SP -MultiD

Analyse multivariée : Cette analyse consiste à étudier l’association entre une variable REPONSE et plusieurs autres variables EXPLICATIVES (ou PREDICTEURS) prises en considération simultanément. Elle utilise un modèle mathématique pour expliquer ces interrelations X1 X2 Maladie (ou autre) X3 X4 X5 AL2005-06 SPUB053 - MAS SP -MultiD

AL2005-06 SPUB053 - MAS SP -MultiD

Association et Causalité EXPOSITION MALADIE association EXPOSITION MALADIE association AL2005-06 SPUB053 - MAS SP -MultiD

Association……« de cause à effet » ! L’ASSOCIATION est-elle VALIDE ???? AL2005-06 SPUB053 - MAS SP -MultiD

Association……« de cause à effet » ! L’ASSOCIATION est-elle CAUSALE ???? AL2005-06 SPUB053 - MAS SP -MultiD

Concept de CAUSE selon l’approche déterministe Koch (1882) : propose 4 postulats permettant d’identifier un agent pathogène responsable d’une maladie : Agent présent dans chaque cas de maladie Agent doit pouvoir être isolé et cultivé dans un milieu externe (culture) Agent, si inoculé à un animal susceptible, doit provoquer la maladie Agent doit être identifiable et isolable chez l’animal ainsi contaminé. AL2005-06 SPUB053 - MAS SP -MultiD

Evolution du concept Koch : déterminisme ABSOLU Mais qu’en est-il pour les maladies non infectieuses Déterminisme « relatif » : Différentes causes peuvent produire le même effet Les causes peuvent être présentes sans que l’effet n’apparaisse Une cause peut produire différents effets,… AL2005-06 SPUB053 - MAS SP -MultiD

En épidémiologie, conception plus pragmatique de la causalité La cause d’une maladie est un événement, une condition, une caractéristique ou une combinaison de ces facteurs qui jouent un rôle important dans la survenue de la maladie ou du problème de santé AL2005-06 SPUB053 - MAS SP -MultiD

9 critères qui aident à l’établissement d’une « relation causale » Evolution du concept Bradford HILL (1965) : tabac et cancer du poumon 9 critères qui aident à l’établissement d’une « relation causale » Remarque: selon les auteurs, le nombre et le type de critères diffèrent. AL2005-06 SPUB053 - MAS SP -MultiD

Critères de causalité Force de l’association Consistance Spécificité Temporalité Gradient biologique (Relation « dose-réponse ») Plausibilité Cohérence Expérimentation (Plan d’étude expérimental) AL2005-06 SPUB053 - MAS SP -MultiD

Force de l’association RR, OR, etc. Si forte il y a peu de chance que les biais expliquent cette association Si faible : il faut être très attentif au fait que d’autres variables peuvent expliquer cette association (confusion) MAIS : Relation « faible » n’exclu pas une relation causale. Relation forte ne garantit pas une relation causale AL2005-06 SPUB053 - MAS SP -MultiD

Consistance Observation répétée d’une association dans différentes populations , dans différentes circonstances, dans différentes études. Attentif car : L’absence de consistance n’équivaut pas à une absence de relation causale Des méthodologies différentes peuvent expliquer une absence de consistance AL2005-06 SPUB053 - MAS SP -MultiD

Spécificité Plus l’association est spécifique (un facteur entraîne une cause et cette cause est due à ce « seul » facteur), plus la causalité est probable Tabac  cancer bronches 9 cancer sur 10 : le malade est fumeur. Mais : !!! Causes multiples !!! Effets multiples Spécificité : si + : forte évidence de causalité si - : ne pas interpréter !!! AL2005-06 SPUB053 - MAS SP -MultiD

Temporalité L’exposition est présente avant la maladie Le respect de la « période d’incubation » Critère qui souffre peu de contradiction mais très difficile à mettre en évidence notamment quand temps de latence long AL2005-06 SPUB053 - MAS SP -MultiD

Gradient biologique (relation « dose-réponse ») Augmentation de la fréquence de la maladie quand l’exposition augmente La mise en évidence d’une telle relation (dans des études non biaisées) est un argument TRES IMPORTANT dans la recherche d’une relation causale Rem : il ne s’agit pas toujours de relation linéaire N’est pas à l’abri de l’effet des variables confondantes AL2005-06 SPUB053 - MAS SP -MultiD

Plausibilité biologique ou clinique L’hypothèse est-elle cohérente avec ce que l’on sait de l’histoire naturelle de la maladie Existe-t-il un mécanisme biologique qui peut expliquer la relation? AL2005-06 SPUB053 - MAS SP -MultiD

Cohérence L’étude entre en COHERENCE avec tout ce qui est connu quant à l’histoire nature, la biologie, l’épidémiologie, l’expérimentation, etc. AL2005-06 SPUB053 - MAS SP -MultiD

Expérimentation Les études expérimentales apporte la preuve de la relation causale Mais : Faisabilité ? Ethique ? « autres expérimentations » : Naturelles Sur animal In vitro AL2005-06 SPUB053 - MAS SP -MultiD

Capacité des « autres » plans d’étude à apporter des informations sur la relation causale Plan d’étude Capacité à « prouver » la causalité Essais contrôlés randomisés Forte Études de cohorte Modérée Études cas-témoins Études transversales Faible Études écologiques faible AL2005-06 SPUB053 - MAS SP -MultiD

Important Il ne s’agit pas d’une check-list : Une association causale peut exister même si tous les critères de causalité ne sont pas respectés Certains critères sont plus important que d’autres (temporalité, dose-réponse,…) Le sens critique et la logique jouent un rôle important dans la recherche de la causalité AL2005-06 SPUB053 - MAS SP -MultiD