Analyse bio-instrumentale

Slides:



Advertisements
Présentations similaires
Les outils biologiques du dépistage
Advertisements

TP master 1 Transfection
Chapitre 6: Fabrication de médicaments
Transport membranaire
I) Obtention de l’ADN recombinant
I) Obtention de l’ADN recombinant
TD n° 1 Electrophorèse.
TD n°2 Chromatographie.
Diagnostic des infections virales
Projet de biologie moléculaire ou de physiologie
Méthodes Analytiques pour études toxicologiques
Cédric PIONNEAU La protéomique : principales techniques et outils informatiques dédiés à l'étude des protéines Cédric PIONNEAU.
TP6 : Phase sombre de la Photosynthèse et devenir de ses produits
BTS ANALYSES BIOLOGIQUES
V- La chromatographie d’exclusion stérique :
purification des protéines
TD1 Thermodynamique etc….
Modalités de contrôle post-transcriptionnel cytoplasmique
Identification d'espèces chimiques
PCR en temps réel (PCR quantitative)
Les approches protéomiques
Évolution et diversité du vivant
Fête de la science2008 Centre dAMP dEPINAL Bilan Participation –80 visiteurs sur 2 jours –30 scolaires –4 articles Presse Régionale –2 Radio.
DOSAGE PONDERAL DES ANTICORPS ANTI-RH
Exemple 1 : L'hypercholestérolémie familiale.
Méthodes d’étude des virus et de diagnostic virologique
BIOTECHNOLOGIE PHARMACEUTIQUE
Hervé PHILIPPE BIN1001 – hiver 2006
Bi 231: Ingénierie des Protéines
L’Étude des Microorganismes
La méthode enzymatique de séquençage, dite de (Sanger; didésoxy)
Compétences Techniques
Corrigé Sujet de virologie session 2 LV342 Janvier 2012
Des Protéines aux Gènes …
La clairance rénale Alain Bousquet-Mélou
Principes et applications
Méthodes de dosage d’un antigène par ELISA
Chapitre 3 LA CELLULE Gilles Bourbonnais Cours compensateurs Université Laval.
Faculté Pharmacie de Lille
II - Visualiser les molécules dans les cellules vivantes
CHROMATOGRAPHIE PLANAIRE CHROMATOGRAPHIE SUR COUCHE MINCE
BioSys: de la modélisation à la commande des bioprocédés Prof
La GFP green fluorescent protein
Acides aminés: Structure Propriétés chimiques générales
ECUE Méthodologie de la Génétique Moléculaire
Module 3 – Métabolisme, anabolisme, catabolisme
Professeur Jeremías GONZÁLEZ
Spectrométrie de masse
HPLC & MS A. Garnier 19 novembre 2014 Intro: Tout est analytique
Purification et caractérisation des protéines
Cours de Bactériologie Faculté de Médecine de Fès
Real-Time PCR assay for rapid and accurate detection of point mutations conferring resistance to clarithromycin in Helicobacter pylori.
Le Transcriptome Introduction Méthodes d’analyse du transcriptome
Rappel: Équilibre acide-base Spectrophotométrie
XChIP Bilan technique – 12 mars in vivo foot-printing versus ChIP  in vivo foot-printing: résolution élevée (1 bp) mais protéine non identifiée.
Thème 2.4 Les membranes.
Lycée Jolimont TOULOUSE
Séparation d’énantiomères
Numérations en microbiologie.
Techniques immunologiques
CHMI 4206 Bioinformatique appliquée
Aspects techniques des biotechnologies
METHODES DE DIAGNOSTIC VIROLOGIQUE
Techniques d’Analyse Moléculaire
Les chromatographies. titre Notions Théoriques Associées 11 TP 16.
Méthodes de détection des amphétamines MARQUET Sarah SCHOENENWEID Camille.
La chromatographie Classification des chromatographies
salut Test de confirmation d’infection HIV
Généralités Techniques immunologiques
Transcription de la présentation:

Analyse bio-instrumentale A. Garnier GCH-2100 A-2013

Mise en contexte Problème réel: Quantifier la production en adénovirus recombinant, produit par culture de HEK-293S Dynamique de la production Méthodes standards longues, fastidieuses et peu précises. Méthode indirecte, 1ère génération: suivre la protéine d’intérêt (ici la PTP1C) Méthode de 2ème génération: suivre l’expression d’un gène rapporteur (ici la « green fluorescent protein », GFP) suite à une infection secondaire, puis mesure au (fluorescence assisted cell sorter » (FACS: directe ou indirecte?

Titration virale: Méthode de plage de lyse

FACS

Fluorescence

Généralisation L’utilisation de gènes rapporteurs (reporter genes) est très fréquente: GFP, lac Z (le gène de la b-galactosidase, gène de la luciférase) Distinction importante entre méthode directe et indirecte Appliquer au cas de la mesure de la concentration en micro-organismes

Méthodes directes pour la biomasse Masse sèche (filtration) Dénombrement: Hemacymètre Coulter FACS Avantages et inconvénients Autres méthodes directes: utilisation de colorants, CFU, dilutions limites…

Quelle est la précision des méthodes basées sur le dénombrement Rappel de la loi de Poisson: x: nb d’évènements quelconques observés dans un espace dimensionnel quelconque n: espérance de x espace dimensionnel peut être le temps, une longueur, une surface, un volume, etc Alors:

Exemple classique: le standard téléphonique Un standard reçoit en moyenne 60 appels/h. quelle est la probabilité qu’il reçoive 0, 1, 2, 3, etc appels durant la prochaine minute? n = 1 appel/minute x = 0, 1, 2, 3, etc P(0,1) = exp(-1)*10 / 0! = 0,368 P(1,1) = exp(-1)*11 / 1! = 0,368 P(2,1) = exp(-1)*12 / 2! = 0,184 P(3,1) = exp(-1)*13 / 3! = 0,06 …..

Pr(x,1) vs x, pour n=1

Pr(x,100) vs x +/- 10%

Écart-type de la loi de Poisson É.-t. (s)= n1/2 Estimation de l’é.-t. (s) = x1/2 Estimation de l’é.-t. relatif: s/x = x-1/2 Indication pour le dénombrement: Limite inférieure: 100-200 évènements Limite supérieure: « comptabilité »!

Autre application de la loi de Poisson: dilutions limites Ex: concentration d’un échantillon en micro-organismes =107 cellules/mL 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1 mL d’échantillon ? Milieux initialement stériles 9 ml 9 ml 9 ml 9 ml 9 ml 9 ml 9 ml 9 ml 7 éprouvettes contenant chacune 9 mL de milieu de culture stérile, inoculées, laissées à incuber

On peut calculer la probabilité que P(x>0,n)

Dilutions limites répétées (ex préc.) 1 mL d’échantillon 1/10 P(x>0,n)=3/5 n≈1 X = 107 !!!

Méthodes indirectes de détermination de la concentration en micro-organismes Densité optique: Turbidité: 545 nm L’absorption lumineuse peut également servir à déterminer la concentration en: Protéines: 214nm (lien peptidique), 280nm (aromatiques: Tyr, Trp, Phe) ADN: 260 nm Fluorescence…

Autres mesures du déroulement d’un procédé de bioproduction Nutriments: sucres, ac. aminés, vitamines, O2 Constituants cellulaires: ADN, protéines, ARN (gene chip) Sous-produits métaboliques: acides organiques, alcools, ammoniaque, CO2 Produit d’intérêt Autres: pH, T, vitesse d’agitation, viscosité, mousse, marqueurs cellulaires, etc

Composition cellulaire

Variation de la composition cellulaire

Méthodes Sondes: pH, OD, pCO2, T Tests enzymatiques, exemples: Glucose par hexokinase(hk) (mesure de la fluorescence du NADH exc. 320-370, ém 420-460) : Glucose + ATP hk G6P + ADP G6P + NAD glucose-6-phosphate déshydrogénase (G6PDH) 6-PG +NADH G6PDH par G6P G6P + NADP G6PDH 6-PG + NADPH

Méthodes (suite) Immuno-affinité: Anticorps-antigène

Enzyme-linked immunosorbent assay (ELISA)

La Réaction en chaîne par polymérase (PCR) Animation tirée du site du Réseau Lyonnais d'Ingénierie Éducative (RELIE), École Normale Supérieure de Lyon (cliquez sur le lien).

PCR en temps réel (real time)

Expression génétique Biopuces (cliquez sur une des images pour l’animation)

Séparation + détection Électrophorèse (SDS-PAGE) Western: EP + anticorps spécifiques à protéines Southern: EP + ADN marqué Northern: EP + ARN marqué

Électrophorèse SDS-PAGE Tiré de Segura, Garnier et al (2007). Figure 2. Fractionation of purified retroviral vector preparations by 1D Gel Electrophoresis Purified virus preparations with (a) and without (b) subtilisin treatment were fractionated on a 4-12% Tris-Glycine polyacrylamide gel (Invitrogen) run under reducing conditions and visualized by silver staining. Protein bands from gel b were excised and subjected to in-gel tryptic digestion prior to MS/MS analysis. Bands containing statistically significant peptide identifications (A-L) are indicated on gel b. Figure 2c shows the protein profiles of samples a (green) and b (blue) superimposed. The theoretical migration positions of all MoMLV viral-encoded proteins are indicated in figure c.

Gel d’électrophorèse 2-D 2-DE des protéines soluble de levures (Échantillon de sérum sanguin, Gygi et al., 2000)

Séparation + détection = chromatographie Ex: High Pressure Liquid Chromatography (HPLC) Échange d’ions Tamis moléculaire Interaction hydrophobe Phase inverse Électrophorèse Automatique Réfrigéré Échantilloneur Réservoir de Phase mobile Pompe Colonne Détecteur Échantillon Collecteur de fraction UV/visible Fluorescence Infra-rouge Indice de réfraction Conductivité Spectrométrie de masse En fonction de la colonne Gradient

Exemple de HPLC (Agilent 1100)

Hydrolysat trypsique de la BSA

Chromatographie

Chromatographie (suite)

Chromatographie (suite) Temps de rétention: identification; surface sous le pic: quantification tM: temps d’élution de la phase mobile tR: temps de rétention tR’: temps de rétention réduit = tR-tM k: facteur de fixation = tR’/tM s: écart-type d’un pic gaussien d: largeur du pic à mi-hauteur = 2,354 s w: largeur du pic à la base = 4 s s/tR: écart-type relatif N: efficacité de la colonne = (tR/s)2 = 5,545 (tR/d)2 = 16 (tR/w)2 N: nb de plateau théorique H: hauteur de plateau théorique = L/N, où L: longueur de la colonne Exemple: 2 colonnes de 25 cm, 1 et 2 tR1 = 416,4 - tR2 = 481,2 d1= 10,2s - d2= 13,2s Calculez N1, N2, h1, h2 identifiez la colonne la plus efficace

Chromatographie (suite) Pour 2 pics: a: facteur de sélectivité = tRB’/tRA’ = kB/kA, où B est le pic le plus à droite Pour phase stationnaire, phase mobile et T données, a=constante Résolution (RS)= Dt/w Exemple, 3 pics A, B et C: tM =83,4 s tR(A)= 195 s tR(B)= 415,4s tR(C)= 481,2 s Calculez aB/A et aC/B

Chromatographie (suite) Calcul de Résolution (RS):

Spectroscopie de masse – arc magnétique

Spectrométrie de Masse - Quadrupole m/z 10-4000 Précision :~m/z 0.1-0.2 Vitesse de balayage: 5000 m/z par sec Le temps de vie d’un ion de sa formation a sa détection ~40-100 μs. www.bris.ac.uk

Spectrométrie de Masse - Temps d’Envol (TOF) L’incorporation d’un réflectron dans le tube du TOF ou une extraction ionique délayée (Cornish et Cotter, 1994; Cotter et al., 2004) TOF est communément employé avec MALDI, il peut aussi être utilisé avec un ESI (Boyle et Whitehouse, 1992) www.chemistry.adelaide.edu.au

Spectroscopie de masse 3 (GCMS)

Spectroscopie de masse 1

Spectroscopie de masse 4 (LCMS)

Tout est dans l'interface LC-MS L'electro-atomisation (electro-spray ionisation, ESI)

Exemple d'analyse MS Albumine Protéine majeure du sérum sanguin (20-30 g/L), souvent utilisé en milieu de culture de cellules de mammifères

Exemple d'analyse MS Albumine >P02769|ALBU_BOVIN Serum albumin - Bos taurus (Bovine). MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGEEHFKGLVLIAFSQYLQQCPF DEHVKLVNELTEFAKTCVADESHAGCEKSLHTLFGDELCKVASLRETYGDMADCCEKQEP ERNECFLSHKDDSPDLPKLKPDPNTLCDEFKADEKKFWGKYLYEIARRHPYFYAPELLYY ANKYNGVFQECCQAEDKGACLLPKIETMREKVLASSARQRLRCASIQKFGERALKAWSVA RLSQKFPKAEFVEVTKLVTDLTKVHKECCHGDLLECADDRADLAKYICDNQDTISSKLKE CCDKPLLEKSHCIAEVEKDAIPENLPPLTADFAEDKDVCKNYQEAKDAFLGSFLYEYSRR HPEYAVSVLLRLAKEYEATLEECCAKDDPHACYSTVFDKLKHLVDEPQNLIKQNCDQFEK LGEYGFQNALIVRYTRKVPQVSTPTLVEVSRSLGKVGTRCCTKPESERMPCTEDYLSLIL NRLCVLHEKTPVSEKVTKCCTESLVNRRPCFSALTPDETYVPKAFDEKLFTFHADICTLP DTEKQIKKQTALVELLKHKPKATEEQLKTVMENFVAFVDKCCAADDKEACFAVEGPKLVV STQTALA Number of amino acids: 594 Molecular weight: 68026.9 Theoretical pI: 5.77 Informations obtenues sur Expasy

Michaud et al (2008)

Spectrométrie de Masse – analyse de protéines par MSMS MS spectrum MS/MS ion spectrum m/z Dissociation nomenclature fragment proposée par Roepstorff, 1984 (Yates, 1998; Westermeier et Naven, 2002; Graves, 2002)

Albumine: fragments trypsiques position mass peptide sequence 25-28 500,2463 DTHK 300-309 1177,5591 ECCDKPLLEK 29-34 712,3736 SEIAHR 310-318 1015,4877 SHCIAEVEK 37-44 974,4577 DLGEEHFK 319-336 1955,9596 DAIPENLPPLTADFAEDK 45-65 2435,2427 GLVLIAFSQYLQQCPFDEHVK 341-346 752,3573 NYQEAK 66-75 1163,6306 LVNELTEFAK 347-359 1567,7427 DAFLGSFLYEYSR 76-88 1349,546 TCVADESHAGCEK 361-371 1283,7106 HPEYAVSVLLR 89-100 1362,6722 SLHTLFGDELCK 375-386 1388,5708 EYEATLEECCAK 101-105 545,3405 VASLR 387-399 1497,6314 DDPHACYSTVFDK 106-117 1364,4803 ETYGDMADCCEK 402-412 1305,7161 HLVDEPQNLIK 118-122 658,3155 QEPER 413-420 1011,42 QNCDQFEK 123-130 977,4509 NECFLSHK 421-433 1479,7954 LGEYGFQNALIVR 131-138 886,4152 DDSPDLPK 438-451 1511,8427 VPQVSTPTLVEVSR 139-151 1519,7461 LKPDPNTLCDEFK 460-468 1052,4499 CCTKPESER 157-160 537,282 FWGK 469-482 1667,8131 MPCTEDYLSLILNR 161-167 927,4934 YLYEIAR 483-489 841,46 LCVLHEK 169-183 1888,9268 HPYFYAPELLYYANK 490-495 660,3563 TPVSEK 184-197 1633,6621 YNGVFQECCQAEDK 499-507 1024,455 CCTESLVNR 198-204 701,4014 GACLLPK 508-523 1823,8996 RPCFSALTPDETYVPK 205-209 649,3338 IETMR 524-528 609,2878 AFDEK 212-218 703,4097 VLASSAR 529-544 1850,8993 LFTFHADICTLPDTEK 223-228 CASIQK 549-557 1014,6193 QTALVELLK 229-232 508,2514 FGER 558-561 509,3194 HKPK 236-241 689,3729 AWSVAR 562-568 818,4254 ATEEQLK 249-256 922,488 AEFVEVTK 569-580 1399,6926 TVMENFVAFVDK 257-263 789,4716 LVTDLTK 581-587 725,2593 CCAADDK 267-280 1578,5981 ECCHGDLLECADDR 588-597 1050,4924 EACFAVEGPK 281-285 517,298 ADLAK 598-607 1002,583 LVVSTQTALA 286-297 1386,6206 YICDNQDTISSK  

Analyse LC et MS1 de l'albumine trypsique ANALYSE MS2, cliquez ici Identification de protéine, cliquez ici (Logiciel Mascot, Matrix Science)

Protéomique du sérum sanguin 60 à 80 g/L de protéine (Tirumalai et al., 2003) 10 000 protéines différentes 22 protéines = 99% de la quantité protéinique du sérum (Zhang et al., 2005) 12 log de variation de concentration (Anderson et Anderson, 2002; Zhang et al., 2005) Tirumalai et al., 2003

Ex: protéomique du sérum sanguin Anderson et Anderson, 2002

Microscopie de cellules vivantes

Imagerie hyper-spectrale