Travaux pratiques sous matlab / octave

Slides:



Advertisements
Présentations similaires
Structures de données avancées : MLH (Multidimensional linear hashing)
Advertisements

Statistique à 2 variables
Cours d‘Analyse de Données
Chapitre 9 La mécanique de Newton.
3. Variantes de l’algorithme
Cours 7 Problèmes d’ordre 2 en temps : Analyse modale
Cours 7 Problèmes d’ordre 2 en temps : Analyse modale
Cours 3-b Méthode des éléments finis 1D
Cours 5-b Problèmes spatio-temporels d’ordre 1 en temps
VII) Formalisme Quantique
C1 Bio-statistiques F. KOHLER
Inférence statistique
Les TESTS STATISTIQUES
Les TESTS STATISTIQUES
Notions de variable aléatoire et de probabilité d’un événement
Modèle proies-prédateurs
Régression -corrélation
INTRODUCTION.
Calcul numérique (avec Maple)
Statistiques appliquées à l’océanographie
variable aléatoire Discrète
VII.2) Analyses statistiques de cartes météorologiques (I): moyennes, variances et composites avec test de Student Statistiques du Géopotentiel à 700hPa,
Travaux pratiques sous matlab / octave
Analyse en Composantes Principales
Un neurone élémentaire
Séminaire dAnalyses comparatives et enquête sociologique Séances 8 et 9 Lanalyse des résultats.
Analyse en Composante Principale (ACP)
Analyse factorielle.
ASI 3 Méthodes numériques pour l’ingénieur
Concepts avancés en mathématiques et informatique appliquées
Le codage des nombres en informatique
La segmentation
Rappel... Solution itérative de systèmes linéaires (suite et fin).
Espaces vectoriels Montage préparé par : S André Ross
Mais en mathématiques, qu'est ce qu'une ligne de niveau?
Introduction aux interactions Océan-Atmosphère en Atlantique tropical
RECONNAISSANCE DE FORMES
Les analyses multivariées
Interprétation automatique
ASI 3 Méthodes numériques pour l’ingénieur
La décomposition en valeurs singulières: un outil fort utile
BILAN.
Une méthode de désagrégation adaptée au forçage de modèles océaniques M. Minvielle, J. Boé, C. Cassou, J. Najac, L. Terray, R. Bourdallé-Badie.
L’endomorphisme le plus simple est l’ homothétie
DU TRAITEMENT DU SIGNAL
STATISTIQUES DESCRIPTIVES
Micro-intro aux stats.
STATISTIQUES – PROBABILITÉS
Présentation de l’ACP à travers un exemple
L’étude du mouvement.
LES PRINCIPES DE LA THERMODYNAMIQUE
Chapitre 3: Variables aléatoires réelles continues
Cours LCS N°4 Présenté par Mr: LALLALI
Structures de données avancées : LH (Hachage linéaire) D. E ZEGOUR Institut National d ’Informatique.
Rappels Variables nominales :
1/16 Chapitre 3: Représentation des systèmes par la notion de variables d’état Contenu du chapitre 3.1. Introduction 3.2. Les variables d’état d’un système.
Mais quel est donc le taux d’inflation actuel ? J.C. Lambelet et D. Nilles Catherine Roux Alvaro Aparicio Gregor Banzer Daniel Cavallaro.
Analyse de données Cours 3 Analyse en composantes principales (ACP)
Structure de groupe Def: un groupe est un ensemble (G,*) où
STATISTIQUES.
1 Courbes Bsplines non uniformes Bsplines uniformes 1.Nombre de points de définition 2.Position des points de définition 3.Degré m des polynômes Paramètres.
Modélisation du signal de télédétection
Pierre Joli Cours de Mathématique Pierre Joli
ACP visualisation Représentation graphique: projection dans un plan de n individus à p caractères Un individu est un point d’un espace à p dimensions.
LES POSTULATS DE LA MÉCANIQUE QUANTIQUE
Joël Picaut Institut de Recherche pour le Développement (IRD) LEGOS/OMP, Toulouse.
Introduction à l’analyse multidimensionnelle Master BOE LATLI Adrien
Analyse en Composantes Principales Vue synoptique.
STATISTIQUE DESCRIPTIVE
Processus ponctuels Caractéristiques et Modèles de répartitions spatiales.
Transcription de la présentation:

Travaux pratiques sous matlab / octave Application des méthodes de décomposition en composantes principales à la climatologie Etude d’un exemple: les modes de variabilité de la température de surface de la mer dans l’océan Atlantique tropical et la variabilité atmosphérique associée. Travaux pratiques sous matlab / octave DOCUMENT D’INTRODUCTION Juliette Mignot – LOCEAN / IRD juliette.mignot@locean-ipsl.upmc.fr

Introduction théorique - EOFs (1) Définition de la matrice des données On analyse un signal discrétisé où (déviation de moyenne temporelle nulle par rapport à ) est connu aux points Xj (j [1,P]) et aux temps ti (i [1,T]). Typiquement, Z est une succession (série temporelle) de cartes de température à la surface de la mer (SST). espace La base canonique de RP sur laquelle sont représentées les variables initialement est l’ensemble des vecteurs de type C’est-à-dire que chaque vecteur correspond à 1 point d’espace pris individuellement. Individu (1 carte) temps Caractère ou variable (évolution temporelle de la variable observée en 1 point d’espace) Idée générale L’idée de l’ACP (ou ici décomposition en EOF) est de déterminer une nouvelle base de RP qui représente le mieux les liens (les covariances) entre les différents individus. On peut montrer que cette nouvelle base est obtenue par diagonalisation de la matrice de covariance.

Exemple d’application Présentation des données - Matrice Z: Données de température à la surface de la mer (SST) issues du jeu de réanalyses NCEP/NCAR: http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.derived.surfaceflux.html Résolution temporelle: Données mensuelles couvrant la période 1948/01 – 2007/12 (60 années) T=12x60=720 par défaut. Dans la suite, on travaillera essentiellement soit avec les moyennes mensuelles saisonnières, donc T=12 (moyenne sur les 60 années), soit avec les moyennes annuelles, donc T=60 (moyenne sur les 12 mois de chaque année) - Résolution spatiale: Le jeu de données initial couvre la Terre entière: [88.542N - 88.542S, 0E - 358.125E] soit 192x94 points de grille spatiaux (lonxlat) On travaille ici avec un sous ensemble couvrant le domaine spatial [40S-40N, 100W-30E] (Atlantique tropical), soit 70x42 points de grille. Donc P=70x42=2940

Organisation du TP Les données sont rangées dans le repertoire DONNEES/ Un certain nombre de routines matlab/octave sont fournies dans le repertoire TOOLBOX/ . Ces routines sont utiles aux programmes fournis . En principe, vous n’avez rien a modifier dans ce repertoire. Les programmes fournis sont rangés dans PROGRAMMES/ Avant toute chose, une fois sous matlab ou sous octave, lancer le programme PROGRAMMES/tpacpandreg_startup.m

Exemple d’application janvier février mars Visualisation de la variabilité saisonnière de la SST dans l’Atlantique tropical: cartes mensuelles moyennes dim(Z)=[ T x P ] Ici, T=12 (nombre de mois de l’année) avril mai juin L’information principale qui ressort de ces cartes est la variation saisonnière de la température de surface de la mer dans chaque hémisphère: en été boréal, il fait chaud dans l’hémisphère nord et froid au sud. Et inversement. L’ACP ou décomposition en EOF est une méthode statistique qui va permettre de retrouver ce signal (qui est visible a l’œil nu ici) de façon objective. juillet aout septembre octobre novembre décembre K Programme matlab carte_SST.m

Introduction théorique - EOFs (2) Matrice de covariance On définit la matrice de covariance (ou matrice d’inertie) par Ou encore . C est donc une matrice de dimensions PxP La trace de la matrice de covariance est aussi appelée moment d’inertie totale. C’est une mesure de la dispersion du nuage des individus (mesures de SST) par rapport à son centre de gravité. La recherche de directions uk maximisant l’inertie du nuage (donc tels que Max(tuktZZuk)) se traduit en algèbre linéaire par une recherche de vecteurs propres de la matrice de covariance C. Diagonalisation de la matrice de covariance C est une matrice symétrique de taille PxP définie positive, dont les valeurs propres sont réelles et positives. Les vecteurs propres associés constituent une nouvelle base de RP qui maximise la représentation de la variance/covariance entre les individus. Ils sont appelés les Fonctions Empiriques Orthogonales (EOF) pour Z.

Introduction théorique - EOFs (3) Composantes principales On définit les composantes principales de Z comme la décomposition (normalisée) du signal décrit par Z sur les EOF (vecteurs propres) En: Les composantes principales sont des vecteurs RT . Ce sont de « nouvelles variables » dont les composantes donnent les coordonnées du nuage de point (des individus) sur les nouvelles directions principales (vecteurs propres, EOF) Interprétations La composante principale Pn est le coefficient de l’EOF En et dépend du temps (indice j) mais pas de l’espace. En est une carte spatiale indépendante du temps. On a ainsi obtenu une décomposition de Z sous la forme Où les EOF En sont orthogonales entre elles et les composantes principales Pn sont orthogonales entre elles. On peut par ailleurs montrer que l’on peut considérer comme la part de la variance associée à l’EOF m.

Exemple d’application (1) Décomposition des moyennes mensuelles saisonnières en EOF: dim(Z)=[ T x P ] Ici, T=12 (nombre de mois de l’année) Programme matlab eof_NCEP_sais.m Répartition des valeurs propres: le 1er vecteur propre explique 91% de la variance saisonnière. Les suivants expliquent une proportion largement plus faible, 6% pour le second et moins de 2% pour les suivants. Au moins dans un premier temps, on limite donc l’analyse au 1er vecteur propre.

Exemple d’application (1) Décomposition des moyennes mensuelles saisonnières en EOF: Pourcentage de variance expliquée dim(Z)=[ T x P ] Ici, T=12 (nombre de mois de l’année) Programme matlab eof_NCEP_sais.m La carte illustre le poids (codé en couleur) de chacun des vecteurs de la base initiale (points d’espace) sur ce vecteur propre EOF1 Les données étant géographiques et nécessitant donc déjà 2 dimensions pour la visualisation, on ne représente qu’un mode à la fois. EOF 2 ej ei e1 EOF 1 ep

Exemple d’application (1) Décomposition des moyennes mensuelles saisonnières en EOF: dim(Z)=[ T x P ] Ici, T=12 (nombre de mois de l’année) Programme matlab eof_NCEP_sais.m La série temporelle correspond à la projection des individus de la matrice Z initiale sur le vecteur propre EOF 1 EOF 2 Sep Fév + + Jan Juin + + EOF 1 + Avr

Exemple d’application (1) Décomposition des moyennes mensuelles saisonnières en EOF: dim(Z)=[ T x P ] Ici, T=12 (nombre de mois de l’année) Programme matlab eof_NCEP_sais.m 91% de la variabilité saisonnière moyenne de la SST est expliquée par un refroidissement relatif dans l’hémisphère nord associé à un réchauffement au sud La série temporelle illustre la modulation saisonnière de ce mode (sur les 12 mois de l’année): ce mode est en phase positive durant l’hiver boréal et négative (il fait + chaud au nord et + froid au sud) durant l’hiver austral