Les prévisions et la gestion de la demande

Slides:



Advertisements
Présentations similaires
Mais vous comprenez qu’il s’agit d’une « tromperie ».
Advertisements

Le Nom L’adjectif Le verbe Objectif: Orthogram
ORTHOGRAM PM 3 ou 4 Ecrire: « a » ou « à » Référentiel page 6
LES NOMBRES PREMIERS ET COMPOSÉS
Licence pro MPCQ : Cours
Additions soustractions
Distance inter-locuteur
1 Plus loin dans lutilisation de Windows Vista ©Yves Roger Cornil - 2 août
International Telecommunication Union Accra, Ghana, June 2009 Relationship between contributions submitted as input by the African region to WTSA-08,
Les numéros 70 –
Les numéros
Les identités remarquables
1. Les caractéristiques de dispersion. 11. Utilité.
Demande globale, élasticités et équilibre de marché
Introduction à la logique
LES TRIANGLES 1. Définitions 2. Constructions 3. Propriétés.
Sondage sur les préjugés Ensemble et l’association d'études canadiennes 20 mars, 2013 Une recherche novatrice sur le lieu, la fréquence et les différents.
variable aléatoire Discrète
La législation formation, les aides des pouvoirs publics
1 7 Langues niveaux débutant à avancé. 2 Allemand.
SERABEC Simulation sauvetage aérien avec un Hercule C130. Départ de St-Honoré le 4 octobre Durée de vol 3 heures. Premier vol en Hercule pour les.
Prévisions des ventes :
La méthodologie………………………………………………………….. p3 Les résultats
Prévision de la Demande
Jack Jedwab Association détudes canadiennes Le 27 septembre 2008 Sondage post-Olympique.
Jack Jedwab Directeur général Association détudes canadiennes Octobre 2011 Jack Jedwab Directeur général Association détudes canadiennes Octobre 2011 Est-ce.
RELATION COÛT-VOLUME-BÉNÉFICE
Le soccer & les turbans Sondage mené par lAssociation détudes canadiennes 14 juin 2013.
Présentation générale
Cours de physique générale I Ph 11
Le drapeau canadien comme symbole de fierté nationale : une question de valeurs partagées Jack Jedwab Association détudes canadiennes 28 novembre 2012.
Si le Diaporama ne s'ouvre pas en plein écran Faites F5 sur votre clavier.
Décomposer un nombre en facteurs premiers.
Régression linéaire simple
Tableaux de distributions
Tableaux de distributions
LES NOMBRES PREMIERS ET COMPOSÉS
Systèmes d’équations du premier degré à deux variables
Les chiffres & les nombres
1.Un rang de données multicolores 2. Deux permutations des n premiers entiers 3. b permutations des k premiers entiers 4. Choix de n points dans [0,1]
RACINES CARREES Définition Développer avec la distributivité Produit 1
Représentation des systèmes dynamiques dans l’espace d’état
Systèmes mécaniques et électriques
Représentation des systèmes dynamiques dans l’espace d’état
Représentation des systèmes dynamiques dans l’espace d’état
DUMP GAUCHE INTERFERENCES AVEC BOITIERS IFS D.G. – Le – 1/56.
La statistique descriptive
Corrélation Principe fondamental d’une analyse de corrélation
Année universitaire Réalisé par: Dr. Aymen Ayari Cours Réseaux étendus LATRI 3 1.
Les prévisions et la gestion de la demande
LES ERREURS DE PRÉVISION e t = X t - P t X1X2X3X4 X5 X6…X1X2X3X4 X5 X6…X1X2X3X4 X5 X6…X1X2X3X4 X5 X6… P5P6P5P6P5P6P5P6 e5e6e5e6e5e6e5e6.
Titre : Implémentation des éléments finis en Matlab
Jean-Marc Léger Président Léger Marketing Léger Marketing Les élections présidentielles américaines.
MAGIE Réalisé par Mons. RITTER J-P Le 24 octobre 2004.
1 INETOP
Résoudre une équation du 1er degré à une inconnue
Aire d’une figure par encadrement
Écart moyen et écart type
La régression multiple
Chapitre 5 Prévisions.
Les fondements constitutionnels
MAGIE Réalisé par Mons. RITTER J-P Le 24 octobre 2004.
ECOLE DES HAUTES ETUDES COMMERCIALES
1/65 微距摄影 美丽的微距摄影 Encore une belle leçon de Macrophotographies venant du Soleil Levant Louis.
Certains droits réservés pour plus d’infos, cliquer sur l’icône.
Nom:____________ Prénom: ___________
Annexe Résultats provinciaux comparés à la moyenne canadienne
Rappels de statistiques descriptives
La formation des maîtres et la manifestation de la compétence professionnelle à intégrer les technologies de l'information et des communications (TIC)
Transcription de la présentation:

Les prévisions et la gestion de la demande Cours #4

La nature de la prévision et de la gestion de la demande Une bonne gestion et la prise de décision adéquates nécessitent la connaissance des demandes à satisfaire. La demande n’est pas toujours connue à l’avance.

La nature de la prévision et de la gestion de la demande Pour prévoir la demande, il faut utiliser des méthodes qui tiennent compte: des tendances passées des facteurs pouvant l’influencer de l’analyse des données connues (commandes déjà entrées). C’est ce qu’on appelle la prévision. La prévision est une étape nécessaire devant précéder la planification des opérations.

La gestion de la demande La gestion de la demande consiste à: Déterminer la demande totale à satisfaire et à la faire connaître au moment voulu et selon des formes précises aux gestionnaires concernés (production, marketing).

Quelles sont les responsabilités du groupe qui s’occupe de la gestion de la demande? Collecte des données sur tous les types de demande que l’entreprise doit satisfaire. Agrégation de ces demandes et la communication des résultats aux services concernés pour avoir une idée globale des besoins en ressources.

Quelles sont les responsabilités du groupe qui s’occupe de la gestion de la demande? Conception et mise en œuvre de moyens permettant d’adapter la demande pour la rendre plus acceptable, dans le cas où cette dernière poserait des difficultés. Établissement des délais de livraison réalistes et contrôle du respect des délais.

Dans quels contextes les prévisions sont-elles utiles? Adoption d’une technologie nouvelle. Modification de la capacité. Gestion de l’équipement. Localisation et l’aménagement. Gestion des stocks. Planification intégrée. Gestion stratégiques des opérations.

Quelles sont les règles d’utilisation de la prévision de la demande? 1) La prévision doit porter sur la demande indépendante (produits finis). 2) La prévision peut être faite sur des familles de produits ou des produits individuels.

Quelles sont les règles d’utilisation de la prévision de la demande? 3) La prévision doit être faite à court ou moyen terme seulement. 4) Il faut prendre en considération la part d’incertitude dans l’utilisation des prévisions.

Facteurs à considérer lors du choix d’une méthode de prévision Variables à prévoir coûts d’une méthode de prévision le genre de données la disponibilité des données l’importance de la prévision coût de la cueillette des données les facteurs qui influencent la variable à prévoir temps et ressources requises pour obtenir les prévisions nombre de variables à prévoir les usagers des outils de prévisions lien entre états passés et états futurs de la variable à prévoir fréquence à laquelle les prévisions doivent être faites Prévisions

Techniques de prévision Méthodes qualitatives Méthodes quantitatives

Méthodes qualitatives Dans quelles circonstances les méthodes qualitatives sont-elles appropriées? si aucune donnée chiffrée n’est disponible. si les données passées sont non fiables. s’il y a des changements majeurs dans les valeurs et les comportements qui empêchent l’utilisation des données existantes.

Quelles sont les méthodes qualitatives? 1. Étude de marché 2. Prévisions visionnaires 3. Méthodes Delphi 4. Analogie historique

1. Étude de marché Questionnaires, contacts par téléphone, entrevues personnelles ou du personnel clé pour amasser des données. Utilisées surtout en planification stratégique, par exemple, pour information sur de nouveaux produits.

1. Étude de marché Une analyse statistique des résultats peut être faite pour tester des hypothèses concernant le comportement des consommateurs. Méthode coûteuse à cause du personnel requis, de la poste, etc. Peut être sujet à un biais élevé.

2. Prévisions visionnaires Basées sur la préparation de prévisions par les vendeurs selon leurs connaissances du marché, du terrain et de leurs clients.

3. Méthode Delphi Se base sur l’opinion de groupes d’experts et vise l’obtention d’un consensus. Les experts sont interrogés individuellement, donc pas de lien entre eux. Ils peuvent être requestionnés itérativement jusqu’à ce qu’un consensus soit atteint. Pratique pour la prévision à long terme et pour prédire les changements technologiques.

4. Analogie historique Ex.: Courbe du cycle de vie pour différents produits similaires

Méthodes quantitatives Deux types de méthodes: 1- Méthodes causales 2- Méthodes des séries chronologiques

1. Méthodes causales Utilisées pour mettre en relation les facteurs explicatifs qui influencent l’évolution d’une variable à prévoir. Exemples: population, localisation géographique, niveau d’éducation, âge, etc.

1. Méthodes causales Chaque facteur a une importance et un effet qui doivent être évalués pour expliquer comment les variables de prévision ont pu être modifiées dans le passé. Un modèle de prévision est construit qui intègre les facteurs appropriés.

2. Méthodes des séries chronologiques Elles s’intéressent aux liens entre les valeurs passées de la variable à prévoir. Un modèle mathématique basé sur l’évolution passée de la variable de prévision est déterminé.

Le choix d’un modèle de prévision devrait dépendre de : 1. Horizon de planification 2. Disponibilité des données 3. Précision requise 4. Taille du budget affecté à la prévision 5. Disponibilité du personnel qualifié

Méthodes causales 1. Régression linéaire Cette méthode permet d’établir un modèle mathématique linéaire qui exprime une variable dépendante en fonction d’autres variables, dites indépendantes.

Méthodes causales 2. Régression multiple et modèles économétriques Cette méthode est analogue à celle de régression linéaire sauf qu’elle peut présenter une dépendance à plusieurs variables indépendantes combinées. Cela donne un modèle qui n’est pas linéaire. Lorsque plusieurs équations de régression doivent être résolues en même temps modèles économétriques

Régression linéaire simple Le modèle de la régression linéaire simple est de la forme: Yt = a + b Xt où Yt est la variable dépendante et Xt la variable indépendante.

Régression simple où sont les moyennes respectives des n observations des X et des Y

Régression simple a et b sont obtenus par les équations normales de la méthode des moindres carrés. Cette méthode tente de trouver la droite représentant le mieux les données en minimisant la somme des carrés de la distance verticale entre chaque point et son point correspondant sur la droite.

Régression simple Les désavantages de cette méthode sont que les données devraient se rapprocher d’une droite. Ceci limite son utilité. Par contre, si on considère une période de temps plus courte, la régression simple peut être adéquate.

Régression simple La régression simple est utilisée principalement comme méthode causale. En séries chronologiques, les résultats sont moins adéquats. Si la variable dépendante change à cause du temps analyse de séries chronologiques.

Exemple 1 Le tableau suivant présente les données et les calculs nécessaires pour faire des prévisions.

Exemple 1 (suite) Quelle est l’équation de régression pour ce problème?

Les séries chronologiques Les méthodes statistiques de prévision se basent sur l’analyse de données historiques appelées les séries chronologiques. Une série chronologique est un ensemble d’observations faites à différentes périodes successives dans le temps.

Qu’est-ce qu’une série chronologique … Périodes 1 2 3 4 5 6 7 8 9 10 1060 1426 1174 916 888 1283 1056 1295 1268 ? Demande 2 000 - 1 000 - Série chronologique ou série temporelle ou série de consommations 1 2 3 4 5 6 7 8 9 10

Série chronologique … Xt, t = 1, …, T

Le processus de prévision …

Voici quelques comportements de séries chronologiques linéaire courbe en S linéaire décroissante cycle exponentielle asymptotique cycle avec tendance

Étapes de la méthode des séries chronologiques 1. Collecte des données cueillette d’observations sur les valeurs de la variable de prévision sur plusieurs périodes. mettre de côté les données non représentatives (ex.: lors de grève.)

Étapes de la méthode des séries chronologiques 2. Analyse des données définir le modèle sous-jacent représentant le mieux l’évolution de la demande passée par: i) technique de l’observation visuelle ii) technique d’analyse d’autocorrélation des données (permet de mesurer l’importance du degré de relation des observations entre elles.)

Étapes de la méthode des séries chronologiques 3. Choix de la meilleure méthode de prévision test systématique des méthodes se rapportant au modèle sous-jacent choisi. étude des résultats obtenus à l’aide d’une technique qu’on verra plus tard (mesures d’erreurs.

Étapes de la méthode des séries chronologiques 4. Obtention des prévisions utiliser les équations déterminées précédemment pour déterminer les prévisions.

Modèle avec niveau constant Une étude est faite de l’évolution aléatoire des données observées autour d’une valeur centrale stable dite niveau. Le niveau correspond en fait à une moyenne demande x x x x x x x niveau x x x x x x x x temps

Différentes façons d’établir ce niveau Moyenne statistique Moyenne mobile Moyenne pondérée Lissage exponentiel

La valeur du niveau est égale à la moyenne des observations retenues. Moyenne statistique La valeur du niveau est égale à la moyenne des observations retenues. où = moyenne statistique au temps t Xi = valeur observée au temps i n = #observations

Moyenne statistique (suite) La prévision P de la demande pour les périodes futures j est donnée par La prévision est donc la même pour toutes les périodes à venir.

Moyenne mobile Pour cette moyenne, seules les observations les plus récentes sont utilisées pour calculer la prévision. Cette méthode nécessite de conserver un grand nombre de données en mémoire.

Moyenne mobile (suite) Les prévisions se calculent de la façon suivante où m = #observations considérées (ordre de la moyenne mobile) t = la dernière période pour laquelle nous considérons une observation

Exemple 2 Nous avons les données suivantes concernant les ventes en 1000 gallons d’essence par semaine. Considérons une moyenne mobile basée sur 3 observations. Quelles sont les prévisions des semaines 4 et 5? Quelle serait la prévision pour la semaine 7?

Lissage exponentiel simple Cette méthode permet de calculer une moyenne pondérée qui tient compte du poids attaché aux observations, le poids s’estompant quand on avance dans le temps. Cette méthode est une des plus utilisées.

Lissage exponentiel simple Soient Pt = prévision au temps t. Xt = observation au temps t. a = facteur de pondération compris entre 0 et 1 (appelé aussi constante de lissage)

Lissage exponentiel simple La prévision au temps Pt se calcule ainsi: Pt = a Xt-1 + a(1-a) Xt-2 + a(1-a)2 Xt-3 +…+ a(1-a)n-1 Xt-n Cette formule se réécrit sous la forme Pt = a Xt-1 + (1-a) Pt-1= Pt-1 + a (Xt-1- Pt-1)

Lissage exponentiel simple Trois types de données sont nécessaires pour appliquer la méthode: 1) La prévision pour la période précédente. 2) La demande réelle pour cette même période. 3) Facteur de pondération a

Exemple 3 Une firme utilise un lissage exponentiel simple avec un coefficient a de 0,1 pour prévoir une demande. La prévision pour la première semaine de février était de 500 unités alors que la demande réelle était de 450. Prévoyez la demande pour la semaine du 8 février.

Exemple 4 Considérons les valeurs observées suivantes pour les 12 prochaines périodes. Soit a=0,1 et 0,3. Quelles sont les prévisions pour les périodes 1 à 13?

Exemple 4 (solution)

Lissage exponentiel simple Le facteur de pondération, a, détermine le niveau de lissage et la vitesse de réaction à la différence entre la prévision et la demande réelle. Le choix de a dépend de l’allure de la demande. Initialisation 2/a - 1

Raisons pour expliquer le succès des méthodes de lissage exponentiel 1) Le modèles sont assez précis. 2) La formulation des modèles se fait aisément. 3) L’utilisateur peut comprendre comment le modèle fonctionne. 4) Le modèle requiert peu de calculs.

Raisons pour expliquer le succès des méthodes de lissage exponentiel: 5) Le modèle requiert peu d’espace-mémoire car on n’a pas besoin de conserver beaucoup de données passées. 6) Les tests pour vérifier comment le modèle se comporte sont faciles à calculer.

Modèle avec tendance Pour ce type de modèle, on ne considère plus une moyenne stable mais plutôt la tendance de la demande en fonction du temps. En fait, la moyenne ne peut nous être utile dans ce cas.

La mesure de la tendance = Ampleur de la variation moyenne observée d’une période à l’autre.

Mesure de la tendance demande tendance x x x x x x x x x x x temps

Modèle avec cycle Ici, la demande ne varie pas de façon constante. On ne peut donc plus parler de tendance linaire comme le modèle précédent. La demande varie de façon cyclique ou saisonnière. Le cycle est décelable par visionnement des données ou par l’analyse de l’autocorrélation.

Modèle avec cycle demande demande cycle seulement cycle + tendance x x x x x cycle + tendance x x x x x x x temps temps

4 méthodes de prévisions pour demandes cycliques Lissage exponentiel à deux ou trois paramètres Décomposition classique Régression multiple Recherche des harmoniques

Choix de la meilleure technique de prévision Principales mesures d’erreurs La meilleure méthode de prévision doit donner les prévisions les plus précises possibles. Pour évaluer une méthode, on se base sur les erreurs de prévision passées.

Principales mesures d’erreurs L’écart entre une donnée passée et la prévision faite par le modèle pour la période correspondante est mesuré pour s’assurer de la justesse du modèle. Les différentes mesures que nous allons voir peuvent être évaluées pour différentes méthodes. La méthode donnant les meilleurs résultats serait la plus appropriée.

Différentes mesures d’écart Écart quadratique moyen Écart absolu moyen Écart absolu moyen en % Biais

Écart quadratique moyen L’écart quadratique moyen se calcule ainsi où Pi = valeur prévue et Xi = valeur réelle.

Écart absolu moyen Ce type de mesure d’erreur tient compte des écarts sans égard au signe des valeurs. L ’écart absolu moyen se calcule ainsi

Erreur absolue moyenne Par ailleurs, l’erreur absolue moyenne en % se calcule un peu différemment que l’écart absolu moyen.

Biais ou erreur moyenne Pour le calcul du biais, les écarts tiennent compte du signe des valeurs i.e. négatifs ou positifs. Le biais devrait être près de 0.

Biais ou erreur moyenne Si le biais est > 0 les prévisions ont tendance à dépasser les valeurs réelles. Si le biais est < 0 les prévisions ont tendance à être sous les valeurs réelles. Si et = Pt - Xt

Biais ou erreur moyenne Le biais se calcule ainsi

Exemple 5 Considérons les données sur les ventes du modèle d’automobile Z pour les années 1974 à 1980. Les prévisions obtenues à l’aide de la méthode du lissage simple et à l’aide d’une régression linéaire sont également données.

Exemple 5 (suite) Calculez les différentes mesures d’erreur. Quelle méthode de prévision est la meilleure?

Solution, LE

Solution, régression