Pr. M. Talibi Alaoui Département Mathématique et Informatique Chapitre 7 : Compression d’images Pr. M. Talibi Alaoui Département Mathématique et Informatique
Introduction objectif : Réduire le volume de données nécessaire au codage d’une image, pour des applications de transmissions ou de sauvegarde.
Nous nous limiterons ici à l’exploitation des redondances à l’intérieur d’une image. Nous allons programmer et comparer deux méthodes : Compression par moyennage de blocs, Compression par transformation linéaire optimale, Ces méthodes travaillent sur des blocs de pixels (de taille m*m (2,16)).
Calculer un ensemble de valeurs qui représentent l’image sous Par exemple, pour une application de transmission, on procède comme suit : Image source Image reconstruite Calculer un ensemble de valeurs qui représentent l’image sous forme comprimé Ces méthodes de compression ne sont pas parfaites.
On comparera les résultats fournis par les différentes méthodes de deux manières : Comparaison subjective : visualiser l’image et estimer sa qualité. Comparaison objective : calculer l’écart type de l’erreur entre les intensités de l’image source et les intensités de l’image reconstruite.
Compression par moyennage de blocs Pour chaque bloc, on transmet uniquement la moyenne des intensités des pixels qui le composent. Pour la reconstruction, chaque bloc est donc remplacé par la moyenne du bloc original. Le taux de compression est : Tc = n Exemple.
Compression par transformée linéaire optimale Cette méthode consiste à placer chaque bloc dans un vecteur, et à appliquer à ce vecteur une matrice rectangulaire A (de p lignes et n colonnes) qui le transforme en un vecteur plus petit.
Donc, pour chaque bloc, on place ses luminances dans un vecteur e de dimension n. Ce vecteur est multiplié par une matrice rectangulaire A (de p lignes et n colonnes) C’est le vecteur s qui est transmis à la place du bloc.
A la réception, on reconstruit le bloc : La matrice A optimale est celle qui minimise l’erreur quadratique :
Elle peut être estimée en calculant la moyenne de eeT sur un grand nombre de blocs. Le taux de compression de cette méthode est de : Résultat