The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-1 Irwin/McGraw-Hill Risque et Aversion au Risque Chapitre 6
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-2 Irwin/McGraw-Hill W = 100 W 1 = 150 Profit = 50 W 2 = 80 Profit = -20 p =.6 1-p =.4 E(W) = pW 1 + (1-p)W 2 = 6 (150) +.4(80) = = p[W 1 - E(W)] 2 + (1-p) [W 2 - E(W)] 2 =.6 ( )2 +.4(80=122)2 = 1,176,000 Risque : CF futurs incertains
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-3 Irwin/McGraw-Hill W 1 = 150 Profit = 50 W 2 = 80 Profit = -20 p =.6 1-p = Risque Sans RisqueProfit = 5 Prime de risque = 17 Est-ce que cette prime est suffisante ? Investissements Risqués et Investissement sans Risque
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-4 Irwin/McGraw-Hill Attitude de linvestisseur face au risque - Risque Averse : hypothèse de base - Risque Neutre - Risque Seeking Utilité : mettre une pénalité pour le risque Fonction dutilité U = E ( r ) A 2 A mesure le degré daversion au risque Aversion au Risque & Utilité
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-5 Irwin/McGraw-Hill Aversion au risque et utilité U = E ( r ) A 2 = 22(%) A (34(%)) 2 Risk AversionAValue High Low T-bill = 5%
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-6 Irwin/McGraw-Hill Principe de Dominance Return Espéré Variance ou écart-type 2 domine 1; return + élevé 2 domine 3; risque +faible 4 domine 3; return + élevé Choix entre 2 et 4 ???
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-7 Irwin/McGraw-Hill Utilité et Courbes dIndifférence Indifférence dun investisseur face à différentes alternatives rendement-risque Exemple Ret. Esp. Ecart-Type U=E ( r ) x 4 x 2 10 %20.0 %2 15 %25.5 %2 20 %30.0 %2 25 %33.9 %2
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-8 Irwin/McGraw-Hill Utilité et Courbes dIndifférence Return Espéré Ecart-type Utilité Croissante
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-9 Irwin/McGraw-Hill Rendement Espéré Propriété 1 : Le rendement espéré dun actif est la moyenne pondérée des rendements sous tous les scénarios possibles.
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-10 Irwin/McGraw-Hill Variance du rendement Proposition 2: La variance du rendement est la valeur espérée des écarts à la moyenne au carré.
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-11 Irwin/McGraw-Hill Rendement dun portefeuille Proposition 3: Le taux de rendement dun portefeuille est une somme pondérée des taux de rendements des actifs entrant dans sa composition, avec les proportions comme poids. r p = W 1 r 1 + W 2 r 2 W 1 = Proportion des fonds investis dans lactif 1 W 2 = Proportion des fonds investis dans lactif 2 r 1 = Rendement espéré de lactif 1 r 2 = Rendement espéré de lactif 2
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-12 Irwin/McGraw-Hill Risque dun portefeuille avec un actif sans risque Proposition 4: Quand un actif risqué est combiné avec un actif non-risqué, le risque du portefeuille, mesuré par lécart-type du rendement, est simplement lécart-type de rendement de lactif risqué, multiplié par le poids de cet actif.
The McGraw-Hill Companies, Inc., 1999 INVESTMENTS Fourth Edition Bodie Kane Marcus 6-13 Irwin/McGraw-Hill Proposition 5: Quand 2 actifs risqués, de variances 1 2 et 2 2, sont combinés dans un portefeuille avec des poids w 1 et w 2, la variance de rendement du portefeuille est donnée par: p 2 = w w w 1 w 2 Cov(r 1, r 2 ) Cov(r 1, r 2 ) = covariance des rendements entre actifs 1 et 2 Risque dun portefeuille