Diana BOU KARAM 1 Cyrille FLAMANT 1 Pierre TULET ²

Slides:



Advertisements
Présentations similaires
Guillaume Thirel CNRM/GMME/MOSAYC Thèse encadrée par Éric Martin
Advertisements

Climatologie et modèles climatiques: les bases scientifiques
Modélisation de l’hydrodynamique du plateau atlantique
Programme: PIM / MEDICIS
Généralités. Modélisation HYCOM en Manche – Gascogne (SHOM / Géosciences Ingénierie / ACTIMAR / Hoang Cslt / …)
HYCOM zone Manche Gascogne. Résultats en 2006
Analyse statistique des nuages arctiques en phase mixte
Evaluation de la description des aérosols
T1.6 – (Mid-latitudes) Caractérisation (1) de laccumulation de glace dans les systèmes à lorigine dinondations (Hymex), (2) de la variabilité de la couverture.
Direction Interrégionale Île de France - Centre
Transport de poussières durant COPS : validation par données lidar 5ème journée des utilisateurs Méso-NH, Toulouse, oct Jean-Pierre CHABOUREAU.
Modélisation mésoéchelle et validation satellite
Simulation Méso-NHObservation MSG Participation de MESO-NH à lexercice dintercomparaison ARM/GEWEX/SPARC TWP-ICE Jean-Pierre CHABOUREAU Laboratoire dAérologie,
Modélisation du climat : les équations primitives maltraitées
Approche modèle-vers-satellite
Détection des ouragans dans une version couplée dARPEGE basculé/étiré Fabrice Chauvin Anne-Sophie Daloz et Jean-François Royer CNRS/GAME, Météo-France,
Rapid Radiative Transfer Model Short Wave
Améliorations du schéma de rayonnement
Projet DEPHY ( ) Laboratoires : IPSL, LSCE, LGGE, LA, LOCEAN, LATMOS, LMD, CNRM-GAME, CEA, SISYPHE Le projet DEPHY visait à regrouper et coordonner.
Jean-Louis Dufresne, Jean-Yves Grandpeix LMD/IPSL; CNRS/UPMC Introduction à la.
1 TR: Pour commencer, je vais vous enoncer qq informations generales sur els aér ainsi que leurs origines Modélisation et analyse de l'évolution des aérosols.
Simulation 3D du transfert radiatif
Etude des échanges stratosphère-troposphère à l’île de la Réunion
Impacts des aérosols sur la dynamique en couche limite urbaine:
Modélisation du CO 2 atmosphérique à léchelle régionale : lexpérience CarboEurope 07 mars 05 Claire Sarrat, Pierre Lacarrère, Joël Noilhan, Sylvie Donier.
Meeting Meso-NH Utilisateurs 12 Octobre 2009
Le système d’assimilation hybride Meso-NH/AROME
Jean-Pierre Chaboureau Laboratoire d’Aérologie
Représentation des nuages de glace dans Méso-nh V. Giraud (LaMP)
Nicole Asencio, Joël Stein
Les nuages, leur représentation dans les modèles,
Implication de l’IPSL sur le thème « Nuages » Deux grand axes d’intérêt de l’IPSL : Climat et grandes échelles & Analyse de processus à meso-echelle Déclinés.
Contexte Partie finale de l’exercice d’inter-comparaison ESCOMPTE  Rédaction du rapport de l’exercice d’inter-comparaison Escompte (corrections des participants.
Résultats de MESO-NH-Chimie pour l'exercice de modélisation ESCOMPTE
1 Simulation d'atmosphère locale sur des agglomérations des Alpes : le cas de Grenoble JP Chollet et M. Claeyman (et C. Staquet)‏ laboratoire LEGI, Université.
Simulations 2D méridien-vertical sur l’Afrique de l’Ouest P
Impact des émissions de NO par les sols sur la formation de l’ozone en Afrique de l’Ouest Claire Delon, Dominique Serça, Jean Pierre Chaboureau, Céline.
Séminaire informel Ven. 10 Nov Impact du transport à longue distance sur la variabilité d’aérosols observée en altitude et en surface sur le bassin.
Bilans de masse par post-traitement rapide: exemple d’une étude climatologique de la campagne Hibiscus-Troccinox-Troccibras 2004 F. Gheusi, J.-P. Cammas,
Thibault Vaillant de Guélis LMD
Simulations LES du cycle diurne des nuages stratocumulus avec Méso-NH Méso-NH in configuration LES Schema microphysique bulk pour les Sc (Khairoutdinov.
Modélisation du climat à l’IPSL: existant, objectifs et enjeux à 4 ans
Tâche 3.G : Vérification de prévisions d’hydrométéores Jean-Pierre CHABOUREAU Laboratoire d’Aérologie, Université de Toulouse et CNRS Réunion IODA-MED,
Toulouse Réunion des Utilisateurs Méso-NH mars 2005 Simulations LES d’une couche limite convective: variabilité de la vapeur d’eau PLAN  Objectifs de.
Thermiques résolus et paramétrés: un diagnostic pour évaluer et améliorer les schémas en flux de masse F. Couvreux, C. Rio, F. Hourdin ARM cumulus r v.
T T2m min (couleurs) précips (5mm/jour contours) Minimum de T2m moins sa moyenne mensuelle ORCHIDEE : instabilité numérique Problème apparemment connu.
PAPRIKA WP4: MODELLING THE INTERACTION BETWEEN SNOWPACK, RADIATION, AND THE ABSORBING MATERIAL DEPOSITED IN THE SNOW Hans-Werner Jacobi
RETIC Action ZVC réunion Méso-NH 07/03/ Action RETIC zonage vents cycloniques  L’action doit répondre à la question :  Après le passage d’un cyclone.
Simulation du cyclone DINA à l’approche de la R é union et influence du relief 3e Réunion des Utilisateurs Méso-NH Samuel Jolivet (LPA/CRC)
Modélisation du CO2 atmosphérique: application et exercice d’intercomparaison. Estimation du transport adjoint Claire Sarrat, Thomas Lauvaux, Joël Noilhan,
P. Tulet A. DiMuro N. Villeneuve
4ème Réunion Utilisateurs Méso-NH 23/24 Avril 2007 – LA, Toulouse
Prévisions de poussières pour FENNEC
Prévisions Méso-NH pendant la campagne AMMA
Couche limite atmosphérique
Couche limite atmosphérique
Journées Méso-NH – 13 octobre 2011 Simulations LES sur grand domaine de l'initiation de la convection pendant AMMA F. Couvreux, C. Rio, F. Guichard, M.
Test de la modification du nesting2_way: ajout du 2_way pour tous les champs 2D input de la surface Cas AMMA 30 Aout 2004 CNRM/GMME/MOANA.
F. GUICHARD & L. KERGOAT Génération, transport vertical et filtrage dimensionnel des poussières désertiques par les systèmes convectifs de mésoéchelle.
Couche limite atmosphérique Micrométéorologie. Équations de Reynolds.
L’effet de l’île de la Réunion sur le cyclone Dina (2002)
Couche limite atmosphérique
Amélioration du schéma bulk à 2 moment pour les simulations LES de nuages de couche limite. O. Thouron, J.L Brenguier, F. Burnet.
Simulations numériques mesoéchelles en Antarctique Meso-NH - Premières approches Lascaux Franck, Masciadri Elena, Hagelin Susanna, Stoesz Jeff.
Couche limite atmosphérique et micrométéorologie
Cours d’aujourd’hui Échelles météorologiques
Réunion VURCA, 27 janvier 2011, CIRED, Paris Projet VURCA Tâche 3 : Vulnérabilité des villes aux canicules A.L. Beaulant, A. Lemonsu, S. Somot, V. Masson.
Couche limite atmosphérique et micrométéorologie Hiv 2008 : 08/01 à 24/04 Semaine de relâche : 25/02-03/03.
Bilan Cycle de l’aérosol désertique : « …décrire et quantifier les émissions, le dépôt et le transport des aérosols désertiques depuis leurs.
Transcription de la présentation:

Étude de l’impact radiatif des aérosols désertiques sur la dynamique de l’atmosphère  Diana BOU KARAM 1 Cyrille FLAMANT 1 Pierre TULET ² Jean-Pierre CHABOUREAU 3 ¹ Service d’Aéronomie/IPSL, CNRS-UPMC, Paris, France ²Météo-France, CNRM/GMEI, Toulouse, France ³Laboratoire d'Aérologie, CNRS-UPS, Toulouse, France

Objectifs 1- Étudier l’impact des aérosols désertiques soulevés dans des régions sources sur le bilan radiatif en surface et sur la thermodynamique de la couche limite: Campagne BodEX 2005 2- Analyser la dynamique 3D autour du front intertropical FIT, ainsi que son cycle diurne et son rôle dans le soulèvement de poussières 3- Étudier l’impact des soulèvements de poussière dans la région saharienne sur la dynamique du Heat low et de la mousson Africaine dans le cadre du projet AMMA

Stratégies 1- Approche couplée observation-modélisation  Confronter mesures et simulations pour compléter les observations si la simulation est valide et contraindre le modèle dans le cas contraire. 2- Effectuer une série de simulation avec et sans aérosols pour évaluer l’impact sur les variables thermodynamiques une fois les simulations avec aérosols sont validées.

Moyens 1- Mesures sol effectuées dans le cadre de la campagne BodEX 2005 au Tchad 2- Observations Lidar sol, aéroporté et satellitaire et mesures sol pendant la SOP2 du projet AMMA 3- Modélisation à méso échelle avec MésoNH tenant compte du schéma de dust (Grini et al., 2005)

Simulation Bodélé • Simulation sur 10 jours avec un seul domaine: 1-12 Mars 2005 • Passage à 2 domaines imbriqués pour des journées ponctuelles Domaine père: 20km 100x100 points initialisé et nudgé toutes les 6h par les analyses du CEP Domaine fils: 5km 160x180 points 2 ways nesting • 72 niveaux verticaux le plus bas à 10 m le plus haut à 28km. • Schéma de surface ISBA ~500km Bodélé

Simulation AMMA • durée de simulation 10 jours: 2-12 Juillet 2006 • 1 domaine: Résolution horizontale: 20km 100x100 points Résolution verticale: 62 niveaux, premier à 30m. • Forçage 3D: analyses ECMWF • Nuding toutes les 6h par les analyses du CEP • Schéma de surface ISBA Tamanrasset NIGER Niamey

Résultats: AMMA Mesures Lidar: LEANDRE 2

Résultats: AMMA Simulations Dropsondes le long de la trace du F20 Rapport de mélange Vitesse du vent

Résultats: AMMA Observations Simulations: - - - Blank Avec aérosols NIAMEY Relative Humidity Temperature at 2m Wind speed at 10m Aerosol optical depth BANIZOMBOU

Résultats: AMMA Wind speed at 10m Aerosol optical depth Temperature at 2m AOD at 670nm AOD at 440nm Spin up TAMANRASSET Relative Humidity Longwave radiation Surface pressure Observations Simulations: - - - Blank Avec Aérosols

Résultats: Bodélé Bonne reproduction de la position des panaches

Résultats: Bodélé Observations Simulations: - - - Blank Avec aérosols Dust event Spin up increase Aerosol optical depth at 440nm in red and at 670nm in green, in black the simulated AOD at 550nm Wind speed at 2m Temperature at 2m Shortwave radiation Faible écart entre simulation avec et sans aérosols  Mauvaise reproduction du vent à 2m et de l’AOD

Les limites de MesoNH 1- Le modèle sousestime les maximums du vent et surestime les minimums  Paramétrisation de la couche limite dans des régions désertiques et surtout la CLA nocturne stable 2- Les panaches d’aérosols simulés sont trop diffus  Le schéma PPM dans la Masdev 4.7 3- Contrairement à ce qu’on attendait: Pas de différences notables sur les variables thermodynamiques entre simulation avec et sans aérosols dans les deux cas d’études d’AMMA et de Bodélé.

A faire 1- Pour la simulation Bodélé: Comparer les profils verticaux de température potentiel simulés à ceux mesurés pour voir comment ça se passe au niveau de la couche d’inversion. Potential temperature Low Level Jet at ~500m 2- Pour la simulation AMMA: Modifier le contenu en eau des sols (les réservoirs d’eau) pour mieux reproduire l’évolution temporelle de la température et de l’humidité relative

Merci pour votre attention diana@aero.jussieu.fr