From Image Registration in Oncology to Complex Workflows on the GRID

Slides:



Advertisements
Présentations similaires
[number 1-100].
Advertisements

Les pronoms compléments
Département fédéral de lintérieur DFI Office fédéral de la statistique OFS Implementing the economic classification revision (NACE / ISIC) in the Business.
Practical Session – Defining Learning Outcomes
Distance inter-locuteur
Branche Développement Cnet La communication de ce document est soumise à autorisation du Cnet © France Télécom - (Nom du fichier) - D1 - 11/01/2014 Diffusion.
1 La bibliométrie pour l'évaluation stratégique des institutions de recherche : usages et limites Indicators for strategic positioning of the research.
Gérard CHOLLET Fusion Gérard CHOLLET GET-ENST/CNRS-LTCI 46 rue Barrault PARIS cedex 13
Environmental Data Warehouse Cemagref, UR TSCF, TR MOTIVE 2011 – projet Miriphyque.
Les numéros
Revenir aux basiques !. 1 Revenir aux basiques Processus Nécessité daméliorer la Maîtrise les Offres et Projets: lanalyse des causes racines montre un.
Cliquez et modifiez le titre Cliquez pour modifier les styles du texte du masque Deuxième niveau Troisième niveau Quatrième niveau Cinquième niveau 23/01/2014©
Status report SOLEIL April 2008
Coopération/Distribution DEA Informatique Nancy. Content 4 Introduction - Overview 4 Coordination of virtual teams : –explicit interaction model –explicit.
Génération interactive dimages projectives : Application à la Radiothérapie Pierre BLUNIER Du 01/12/2002 au 28/03/2003 Centre Léon Bérard.
TP2 ... MVC ? JList JLabel JSlider ImageLibrary Contrôleur Vue Modèle
Analyse de la variance à un facteur
1Chaire de commerce électronique RBC Groupe Financier HEC Montréal Is e-Commerce different ? Commercer en ligne : Est-ce différent ? Sylvain Sénécal Is.
Minimisation Techniques 1 Assimilation Algorithms: Minimisation Techniques Yannick Trémolet ECMWF Data Assimilation Training Course March 2006.
Université Des Sciences Et De La Technologie DOran Mohamed Boudiaf USTO République Algérienne Démocratique et Populaire Département de linformatique Projet.
Français I Leçon 2B Une semaine au lycée Au Debut #7 (for the dates of November 5 and 6) Please Translate the Following: 1. I love the math course. (Adorer.
Defence R&D Canada R et D pour la défense Canada Novel Concepts for the COP of the Future Denis Gouin Alexandre Bergeron-Guyard DRDC Valcartier.
CONCOURS DE CONAISSANCE 4 Français I Mars Il ________ la géographie (to learn).
1 of 46 2 of 46 UPDATE UPDATE ON TV ANTENNAS SINCE LAST BOARD MEETING SINCE LAST BOARD MEETING HELD ON FEBRUARY 25, 2010, YOUR BOARD HAS MADE MORE PROGRESS.
TM.
Application des algorithmes génétiques
L’Heure Telling Time.
Defence Research and Development Canada Recherche et développement pour la défense Canada Canada 11-1.
How to solve biological problems with math Mars 2012.
1 of of 40 UPDATE UPDATE ON TV ANTENNAS SINCE LAST BOARD MEETING SINCE LAST BOARD MEETING HELD ON FEBRUARY 25, 2010, YOUR BOARD HAS MADE MORE PROGRESS.
EUROPEAN ASSOCIATION OF DEVELOPMENT RESEARCH AND TRAINING INSTITUTES ASSOCIATION EUROPÉENNE DES INSTITUTS DE RECHERCHE ET DE FORMATION EN MATIÈRE DE DÉVELOPPEMENT.
28th Conference of Directors of Paying agencies Namur, 27 to 29 October 2010 The Belgian Presidency of the Council of the European Union Workshop 2 : Control.
1 Guide de lenseignant-concepteur Vincent Riff 27 mai 2003.
PM18 MONTAGE DU BLINDAGE AUTOUR DE LA QRL F. DELSAUX - 25 JAN 2005
Titre : Implémentation des éléments finis sous Matlab
ACDI IUT de Paris – 05 février CR-MD - v1.20 Enquête POST-DUT Informatique 03 1 Les diplômés de 2003 Claude Ratard - Vélizy.
Magnets fiche projet / project sheet IAFACTORY THE MAGNETIC FACTORY magnets. IAFACTORY | conseil en architecture de linformation | |
TortoiseSVN N°. Subversion : pour quoi faire ? Avoir un espace de stockage commun – Tous les étudiants du SIGLIS ont un espace svn commun Partager vos.
LES NOMBRES PREMIERS ET COMPOSÉS
PURCHASING PHASE REVIEW Cornerstones of Purchase baseline
Laboratoire de Bioinformatique des Génomes et des Réseaux Université Libre de Bruxelles, Belgique Introduction Statistics.
La pratique factuelle Années 90 un concept médical visant à optimiser les décisions cliniques face aux soins des patients Aujourdhui un concept évolutif,
29e CONFÉRENCE INTERNATIONALE DES COMMISSAIRES À LA PROTECTION DES DONNÉES ET DE LA VIE PRIVÉE 29 th INTERNATIONAL CONFERENCE OF DATA PROTECTION AND PRIVACY.
ETL et Data Mining Présenté par : Marc Catudal-Gosselin Université de Sherbrooke automne 2004 automne 2004.
Présentation dun modèle dinterface adaptative dun système de diagnostique et dintervention industriel: ADAPTS (Adaptive Diagnostics And Personalized Technical.
Systèmes mécaniques et électriques
DUMP GAUCHE INTERFERENCES AVEC BOITIERS IFS D.G. – Le – 1/56.
Ce document est la propriété d EADS CCR ; il ne peut être communiqué à des tiers et/ou reproduit sans lautorisation préalable écrite d EADS CCR et son.
Marketing électronique Cours 5 La personnalisation.
Titre : Implémentation des éléments finis en Matlab
VOCABULAIRE 7.2 Français II. 2 Tu dois.... Youve got to.... stronger than the expression on the next slide Tu dois étudier si tu veux réussir à la classe.
Thematic Alignment of Static Documents with Meeting Dialogs Dalila Mekhaldi Diva Group Department of Computer Science University of Fribourg.
Analyse Globalisée des Données d’Imagerie Radiologique
Analuse Globalisée des Données d Imagerie Radiologique Analyse Globalisée des Données dImagerie Radiologique Cécile Germain-Renaud
INDICATOR DEFINITION An indicator describes the manifestation of a process of change resulting from the pursuit of an action. Un indicateur décrit la manifestation.
Différencier: NOMBRE PREMIER vs. NOMBRE COMPOSÉ
Traitement de différentes préoccupations Le 28 octobre et 4 novembre 2010.
1/65 微距摄影 美丽的微距摄影 Encore une belle leçon de Macrophotographies venant du Soleil Levant Louis.
Modifications of working conditions in the host states Report on the AT Board held on 18 April 2000 New minimum wages in Switzerland Impact of the 35-hour.
VTHD PROJECT (Very High Broadband Network Service): French NGI initiative C. GUILLEMOT FT / BD / FTR&D / RTA
KM-Master Course, 2004 Module: Communautés virtuelles, Agents intelligents C3: Collaborative Knowledge construction & knowledge sharing Thierry NABETH.
8th International Conference on psychosocial and economic aspects of HIV infection
Quelle heure est-il? What time is it ?.
The Solar Orbiter A high-resolution mission to the Sun and inner heliosphere.
Belgian Breast Meeting Senator F. Roelants du Vivier 13th october.
Slide 1 of 39 Waterside Village Fête ses 20 ans.
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
Analuse Globalisée des Données d ’Imagerie Radiologique Ecole Grid5000, Grenoble, 10 mars 2006 Recalage d'images médicales Validation expérimentale sur.
Definition Division of labour (or specialisation) takes place when a worker specialises in producing a good or a part of a good.
Transcription de la présentation:

From Image Registration in Oncology to Complex Workflows on the GRID Xavier Pennec, PhD, INRIA-Sophia, projet Epidaure Johan Montagnat, PhD, I3S, Rainbow team, Tristan Glatard, I3S, Rainbow + INRIA, Epidaure teams Pierre-Yves Bondiau, MD, PhD, Centre Antoine Lacassagne, Nice

Overview The Medical application: The scientific question: Registration for oncology The scientific question: Evaluation / comparison of registration algorithm performances The technical challenge: Running the workflow on the GRID AGIR - Sophia

Image Registration for Oncology Registration / segmentation are basic components of medical image analysis Registration: finding homologous points / tranformation Segmentation: give anatomical label to each image point Registration for brain radiotherapy Planning Fusion of image modalities (multimodal, rigid) Warp atlas to patient image for segmentation (mono-modal, non-rigid) Definition of Target volumes and Organs at risk: dose optimization Follow-up (monomodal rigid) http://www.healthgrid.org/docs/pdf/WhitePaperdraft_v1.1-3reviewedv2.pdf (ch 3/4) AGIR - Sophia

Inter-subject registration Affine transformation Image Registration for Oncology Inter-subject registration Affine transformation MR T1 Images 256x256x120 voxels Atlas to patient registration for radiotherapy planning Exemple de recalage atlas vers image sujet pour definir le planning preoperatoire: 1/ Correction du positionnement global + ajustement d'echelle (transformation affine) Video = Fusion des intensites des 2 images apres la correction geometrique de l'image du patient. Correct size and position but high remaining variability in cortex and deep structures AGIR - Sophia

Image Registration for Oncology Exemple de recalage atlas vers image sujet pour definir le planning preoperatoire: 2/ Correction des deformations entre le creveau de l'atlas et le cerveau du patient (transformation elastique = deformation insuffisante / transformation fluide). Videos = Fusion des intensites des 2 images apres la correction geometrique de l'image du patient. Registration in 5 min on 15 PCs Anatomically meaningful deformation Adaptive non-stationary visco-elastic inter-subject registration AGIR - Sophia

Atlas Propagate the segmentation of structure of interest from the atlas to the patient image AGIR - Sophia

Image Registration for Oncology Define target volume and organs at risk thanks to the segmentation Optimize the irradiation process to maximize the dose within the tumor minimize it within neighboring organs at risk AGIR - Sophia

Image Registration for Oncology There is no universal registration algorithm More than 600 references on medical image registration in 1997 More than 100 papers each year… (70 at MICCAI 2004 only) Registration algorithms as Grid services Use up to date algorithm Evaluation / comparison of algorithm performances Challenges Inter-operability (coordinate systems, transformation format…) Ontology describing data, registration problems and algorithms AGIR - Sophia

Overview The Medical application: The scientific question: Registration for oncology The scientific question: Evaluation / comparison of registration algorithm performances The technical challenge: Running the workflow on the GRID AGIR - Sophia

Variability of a registration algorithm Fixed internal parameters Multiscale resolution (Typical variance…) External parameters Data (image) 1 Data (image) 2 Acquisition noise Patient effects Varying internal parameters Initial transformation (…) Registration algorithm Final transformation Robustness: ability to find the right transformation (success/failure) Precision: Repeatability w.r.t. some parameters (e.g. initialization) Accuracy: Variability w.r.t. the ground truth for typical data AGIR - Sophia

Types of errors for an energy minimization Robustness Local minima at a global scale Uncertainty = deviation from the real transformation Bias (features, method, adequacy of the criterion) Accuracy Extrinsinc (sensitivity to the noise on the features) Intrinsic or precision (optimization, interpolation, local minima) AGIR - Sophia

Quantifying the registration errors Robustness: size of the basin of attraction Probability of convergence Uncertainty = deviation from the real transformation Maximum error: bound Mean Error: covariance matrix, std dev. On the transformation ( rotation sr [rad], translation st [mm]) On test points (TRE sx) AGIR - Sophia

Targeting using Augmented reality User 1 (50 trials): Repeatability: s = 2.2 mm Bias: 3.0 mm Accuracy: s = 3.7 mm [ S. Nicolau, A. Garcia et al., Aug. & Virtual Reality Workshop, Geneva, 2003 ] AGIR - Sophia

Targeting using Augmented reality User 2 (50 trials): Repeatability: s = 1.9 mm Bias: 1.3 mm Accuracy: s = 2.3 mm [ S. Nicolau, A. Garcia et al., Aug. & Virtual Reality Workshop, Geneva, 2003 ] AGIR - Sophia

Targeting using Augmented reality Both users (100 trials): Repeatability: s = 2.2 mm Bias: 1.7 mm Accuracy: s = 2.8 mm [ S. Nicolau, A. Garcia et al., Aug. & Virtual Reality Workshop, Geneva, 2003 ] AGIR - Sophia

Performance evaluation and validation Synthetic data (simulation): Available ground truth Difficult to identify and model all sources of variability Real data in a controlled environment (Phantom): Possible gold standard Performances evaluation in specific conditions Difficult to test all clinical conditions May hide a bias Image database representative of the clinical application Usually no ground truth Should span all sources of variability AGIR - Sophia

Performance Evaluation without Gold Std Registration or consistency loops Pennec et al. IJCV 25(3) 1997 & MICCAI 1998. Holden et al. TMI 19(2), 2000 Roche et al MICCAI 2000 & TMI 20(10), 2001. Cross-comparison of criterions Hellier et al MICCAI 2001 & TMI 22(9), 2003. Ground truth as a hidden variable (EM like algorithms) Granger, MICCAI 2001 & ECCV 2002, Warfield, MICCAI 2002, [Staple, segmentation] Nicolau, IS4TM 2003 Error prediction Pennec et al. ICCV 1995, IJCV 25(3) 1997 & MICCAI 1998. Fitzpatrick et al, MedIm 1998, TMI 17(5), 1999. Nicolau et al, INRIA Research Report 4993, 2003 AGIR - Sophia

Performance Evaluation without Gold Std Bronze standard: The exact result is an unknown variable Unbiased estimation: use redundant information use many different registration algorithms (average biases, so that precision ~ accuracy) Use many different data (redundant information to ensure precision) Average transformations (maximal consistency) Data intensive application: High number of images across different databases High number of registration algorithms AGIR - Sophia

Multiple a posteriori registration Best explanation of the observations (ML) : Robust Fréchet mean Robust initialisation and Newton gradient descent Result AGIR - Sophia

Example bronze std AGIR - Sophia

Performance Evaluation without Gold Std Data intensive application: High number of images across different databases High number of registration algorithms Grid validation protocol (PhD Tristan Glatard) Find available data that match the problem description Find the algorithms that can deal with them Find and organize the resources to do the job AGIR - Sophia

Bronze Std workflow The bronze standard workflow CrestMatch PFMatchICP PFRegister Yasmina Baladin Results management Format conversion Crest lines extraction Format conversion Results management Target image : - Image1 - Image2 - ... Registration algorithms Other components data links input output Floating image : AGIR - Sophia

Overview The Medical application: The scientific question: Registration for oncology The scientific question: Evaluation / comparison of registration algorithm performances The technical challenge: Running the workflow on the GRID AGIR - Sophia

Workflow manager Workflow description Workflow Execution components / links Taverna is the most powerful Workflow Execution Use the available parallelism (different notions of grid….) Taverna has severe limitations Control issues AGIR - Sophia

Workflow description Description of processing components (web services) Interface (e.g. WSDL), independent of their implementation Example: <message name="registrateWithCrestMatchRequest"> <part name="reference" type="xsd:string"/> <part name="floating" type="xsd:string"/> <part name="crest-ref" type="xsd:string"/> <part name="crest-float" type="xsd:string"/> <part name="input-comment" type="xsd:string"/> </message> <message name="response"> <part name="result-image" type="xsd:string"/> <part name="result-voxel-transfo" type="xsd:string"/> <part name="result-real-transfo" type="xsd:string"/> <part name="reference-image" type="xsd:string"/> <part name="floating-image" type="xsd:string"/> <part name="comment" type="xsd:string"/> <SOAP:address location="http://colors.unice.fr:18002"/> AGIR - Sophia

Workflow description Description of processing components (web services) Interface (e.g. WSDL), independent of their implementation Description is syntactic, not semantic Description of links between components Control links (from e-business): BPEL4WS – WSCDL Data links (from e-science) Scufl (Taverna) – MoML (Kepler) <sequence> <flow> <switch> <while> <wait> BPEL tags <processor> <source> <sink> <link> Scufl tags AGIR - Sophia

Taverna Chosen workflow management tool: Taverna Developed in the UK project myGrid (bioinformatique) Open source : http://taverna.sourceforge.net Based on web-services Most powerful workflow manager for description Current research (e.g. in myGrid, UK) Semantic annotation of services through ontologies Automatic transcription into translating units Limitation of translating units needed for algorithm compatibility Systematic discovery of available components AGIR - Sophia

Taverna Limitations of the data iteration strategy description Scufl: dot and cross products operators In our case: register all images of the same patient the same modality A different exam date Set 0 Set 1 I0 J0 I1 J1 I2 J2 Set 0 Set 1 I0 J0 I1 J1 I2 J2 Ref Img Flo Img A0 A0 A1 A1 A2 A2 B0 B0 B1 B1 AGIR - Sophia

Taverna: Execution Interaction of Taverna with the grid (EGEE) Exloiting the parallelism of the workflow Splits and synchronize, e.g. C1: Initialization C2: Register Algo 1 C3: Register Algo 2 C4: avarage results Taverna is OK for one data… Taverna workflow manager Registration Web-Service EGEE User Interface SOAP (over HTTP) ssh tunnelling command line interface Grid Resources C1 C2 C3 C4 D0 AGIR - Sophia

Exploiting parallelism Data parallelism: components are not multithread in Taverna! Patch with submission/fetching services Data order is not preserved (send 1/2/3, receive 3/1/2) Need a track record for each result C1 C2 C3 C4 D0, D1, D2 Asynchronous interaction Taverna Submission service Fetching Grid Monitor2 Monitor1 query1 query2 Web-Service computation1 result1 computation2 result2 Synchronous interaction AGIR - Sophia

Exploiting parallelism Data + component parallelism: streaming (Pipelining) Nw sequential steps, ND Data sets, Mean time T per component Execution time = ND.Nw.T vs (ND+Nw-1).T Example for registration: nD = 50 ; nW = 4 ; T = 30min Execution time = 100h vs 26.5 h Streaming is not possible with Taverna C1 C2 C3 C4 D0, D1, D2 AGIR - Sophia

A new workflow execution engine Development of a new execution engine compatible with Taverna description (Scufl) Allowing data and Component parallelism Implementing result traceability Article submitted, soft to be available at http://www.i3s.unice.fr/~glatard AGIR - Sophia

Controlling the execution Taverna and the new execution engine handle: The traceability of results (execution tree for each data) Taverna handles: Re-submissions and delays Alternative but predefined locations of web-services Remaining issues Nor Taverna nor EGEE handles Job submission errors Cancelled or lost jobs Timeouts How to do that without stopping the workflow execution? Is it a middleware or a workflow manager issue? AGIR - Sophia

Conclusion - perspectives Prototype of a new execution engine for Taverna Exploiting streaming parallelism Control of traceability Open questions Including ontologies Granularity of jobs on the grid Reliable interface with the EGEE infrastructure (timeouts/errors) The Bronze standard application Verification phase (standardization / converters) Coupling with ontologies Benchmark for registration algorithms Compression Workflow execution engines on the grid AGIR - Sophia

References Bronze Standard Worflows on GRIDS Granger et al, MICCAI 2001 & ECCV 2002. Nicolau et al, IS4TM 2003. Worflows on GRIDS T. Glatard & al. Grid-enabled workflows for data intensive applications. IEEE Int. Symp. On Computer-based Medical Systems CBMS’05. T. Glatard & al. An optimized workflow enactor for data-intensive grid applications, Submitted to IEEE/ACM Intern. Work. On Grid Computing 2005 (associated to Supercomputing 2005). AGIR - Sophia

AGIR - Sophia

Grid registration services Computer resources Image data resources Registration service GRID User Scenario 1: user accesses to registration services through the grid on his own data Scenario 2: the user test his algorithm on standard image databases AGIR - Sophia

Grid registration services Interoperability challenges Image format (input / output) Dicom (communication module ?) Basic 3D image format ? Transformation formats Standardized displacement field / resampled image Internal representation + std resampling function Algorithm parameters / options Define std param. w.r.t. classes of registration problems Interactivity State of advancement (reporting) Interactive corrections AGIR - Sophia

Grid registration services Ontology of Algorithms (registration service) Type of data Images (2D, 3D, time series) Point clouds, landmarks Type of spatial transformation Rigid / similarity / affine Non rigid (global / local) (splines, def. Fields, polyrigids…) From Data to Transformation Comparison metric (SSD, Correlation coefficient) takes into account the intensity transformation Optimization procedure Interactivity AGIR - Sophia

Grid registration services Ontology of Registration Problems (image databases) Modality involved (specifies the type of data) Monomodal (CT, MR, US, Video, point measures…) Multimodal (combination of above) Atlas to modality Image content (specifies the type of transformation) Anatomical part concerned (head, thorax, abdomen…) Changes expected intrasubject / intersubject / atlas Smooth evolution / pathology AGIR - Sophia

Etat d’avancement actuel Description du Workflow Expose Tristan Image database standardization Geometrie des images (dicom -> simple 3D format) Que faire avec des images tiltees ? Format des images (pour l’instant inr) Registration algorithm standardization Format des transformations: gerer les multiples conversions Description du parametrage des algorithmes pour des types de recalage donnes, eg: MR T1, T1i, T2, PD, Flair AGIR - Sophia

Effet de la compression sur le recalage Probleme medical Organe / pathologie Probleme de recalage (e.g fusion pour planning oncologie) Base de donnee image 2 types d’images (e.g. MR T1, T1i, T2, PD, Flair…) Nb patients suffisant, Nb instant temporels >1 ? Compression Nb parametres? Compression sur 1 ou les 2 images ? PB de compression: optimale (stockage) / aleatoire (pertes reseau) Recalage Influence de l’algorithme / influence des parametres Resultat = transformation AGIR - Sophia

Effet de la compression sur le recalage Evaluation du Resultat: Erreur / resultat sans compresssion (ou ground truth?) Synthese de la population erreur+parametres Resume (rigide): stddev rotation/translation, %outliers 30 a 50 exp / parametre a tester Combien de parametres compression / image / recalage / ?? Echelle de mesure Absolue Relative (requiert la variabilite normale) Quelle est la question scientifique? E.g.: l’influence de la compression est negligeable / la variabilite normale AGIR - Sophia

Les thématiques Medical Apps. Algorithm Gridification Core Grid Medical applications evaluation P-Y Bondiau Interactive volume reconstuction A. Osorio Workflow Management J. Montagnat Medical Apps. Cardiological images Segmentation I. Magnin Humanitarian Medical Development V. Breton Image registration in oncology X. Pennec Algorithm Gridification Dissemination C. Germain Services for Interactivity C. Germain Middleware evaluation E. Jeannot Medical data Management J. Montagnat Medical data access protocols J-M. Moureaux Core Grid Medical Services AGIR - Sophia

Ordonnancement sur la grille Temps de calcul des algorithmes de recalage dans le workflow des bronze standard : Problème de la granularité des jobs soumis : soumettre un job introduit un surcoût (soumission, ordonnancement, ...) les jobs de durée faible sont pénalisés AGIR - Sophia

Ordonnancement sur la grille (2) But : optimiser le nombre n de jobs à soumettre pour exécuter une tâche de durée W Temps total d'exécution : H = max(G + W/n) G est une va dont la loi change au cours du temps Mesure de la densité de probabilité de G : Minimisation de l'espérance de H : {jobs} Soumission d'un job sur EGEE AGIR - Sophia

Ordonnancement sur la grille (3) Résultats : AGIR - Sophia

Les thématiques Medical Apps. Algorithm Gridification Core Grid Medical applications evaluation P-Y Bondiau Interactive volume reconstuction A. Osorio Workflow Management J. Montagnat Medical Apps. Cardiological images Segmentation I. Magnin Humanitarian Medical Development V. Breton Image registration in oncology X. Pennec Algorithm Gridification Dissemination C. Germain Services for Interactivity C. Germain Middleware evaluation E. Jeannot Medical data Management J. Montagnat Medical data access protocols J-M. Moureaux Core Grid Medical Services AGIR - Sophia