Machine Learning Techniques

Slides:



Advertisements
Présentations similaires
New opportunities offered by APHLIS 3 Les nouvelles opportunities qui soffrent avec APHLIS 3 JRC.
Advertisements

Artist's (e)book ! Format :.pdf,.azw,.epub... Software (read) : iBooks, Stanza... Software (make) : InDesign, Sigil... Hardware : iPad, Arnova, PC...
The Microsoft ® Mouse Mischief add-in works with Microsoft ® PowerPoint ® 2010 or Microsoft ® Office PowerPoint ® Download and install the Mouse.
Présentation IDP Sondes de détection d’intrusion
(Nom du fichier) - D1 - 01/03/2000 FTR&D/VERIMAG TAXYS : a tool for the Development and Verification of RT Systems a joint project between France Telecom.
Why? Extended language Sentence level work Cultural Find out new language Stimulus for creativity Reinforce everything children do in English Fun for.
Gérard CHOLLET Fusion Gérard CHOLLET GET-ENST/CNRS-LTCI 46 rue Barrault PARIS cedex 13
RECOMMENDATIONS ON EXPORT MARKETING FOR GEORGIAN WINES Tbilisi – November 27, 2007.
Status report SOLEIL April 2008
À quelle heure il se lève?
Defence R&D Canada R et D pour la défense Canada Novel Concepts for the COP of the Future Denis Gouin Alexandre Bergeron-Guyard DRDC Valcartier.
Bayesian Inference Algorithms Revisited
TM.
Cliquez et modifiez le titre Cliquez pour modifier les styles du texte du masque Deuxième niveau Troisième niveau Quatrième niveau Cinquième niveau 1 Cliquez.
Defence Research and Development Canada Recherche et développement pour la défense Canada Canada 11-1.
The Benefits of Technology in the Classroom By: Jennifer Langer.
How to solve biological problems with math Mars 2012.
Soirée de réseautage 31 mars h à 19h Networking Event March 31, – 7 pm.
TortoiseSVN N°. Subversion : pour quoi faire ? Avoir un espace de stockage commun – Tous les étudiants du SIGLIS ont un espace svn commun Partager vos.
Finger Rhyme 2 Autumn Term Module 2.
Les Tâches Ménagères Learning Objectives:
Sculpture sur des coquilles doeufs.... La difficulté est de trouver une personne suffisamment aimée pour mériter un tel présent fait de finesse et de.
Contribution du projet PARIS Christian Pérez Réunion LEGO LIP, ENS Lyon 10 février 2006.
Déjeuner du matin Jacques Prévert
Limplantation dun parc naturel marin en Martinique et le développement écotouristique : quels impacts pour les populations locales By Stéphanie Clarke.
Ce document est la propriété d EADS CCR ; il ne peut être communiqué à des tiers et/ou reproduit sans lautorisation préalable écrite d EADS CCR et son.
Systèmes distribués Le futur des systèmes dinformation est: Networked Diverse Numerous Mobile Ubiquitous Systèmes multiagents Middlewares: CORBA JINI HLA.
Cest mercredi le neuf octobre Le plan! 1.Révisions 2.Vocabulaire 3.Jouer 4.Ecouter 5.Parler Il fait beau! Le but! Les couleurs!
Quelle est la date? Quel est le plan? 1. Écouter 2. Répéter 3. Enseigner 4. Apprendre Quel temps fait-il? Quel est le but? Le verbe - Etre.
Jeudi, le 22 Mars Pass LATE Grammar tutor packet (50) & p.131 Workbook (50) Pass Puzzle Packet (100)
Marketing électronique Cours 5 La personnalisation.
VTHD PROJECT (Very High Broadband Network Service): French NGI initiative C. GUILLEMOT FT / BD / FTR&D / RTA
KM-Master Course, 2004 Module: Communautés virtuelles, Agents intelligents C3: Collaborative Knowledge construction & knowledge sharing Thierry NABETH.
Mercredi, le 1 octobre Do the warm-up worksheet. You may use your notes from last class. Get out a sheet of notebook paper and label it “La famille”
Laboratoire des outils informatiques pour la conception et la production en mécanique (LICP) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 1 Petri nets for.
Pronouns Words that are used instead of NOUNS. Look at this piece of writing … I went down town and met my friends. My friends were waiting outside the.
Le PMC et l’apprentissage profond
Le PMC et l’apprentissage profond
QUELLE HEURE EST-IL?.
G. Peter Zhang Neurocomputing 50 (2003) 159–175 link Time series forecasting using a hybrid ARIMA and neural network model Presented by Trent Goughnour.
Definition Division of labour (or specialisation) takes place when a worker specialises in producing a good or a part of a good.
Français 12/18/17 Ouvrez vos livres à la page 100, faites les 1 et 2.
1-1 Introduction to ArcGIS Introductions Who are you? Any GIS background? What do you want to get out of the class?
Mouth Exercises.
INSERT High quality Team photo
art 257 :: motion graphic design
Session 3: Implementation experience: Selection of measures based on Cost-effectiveness Analysis Introduction: summary of relevant results of the questionnaire.
AP ECONOMICS: February 13
Week 10: Healthcare Data Standardization
Beneficiary Communication
Bunker Project Instruments interface
What Makes Educational Sessions Work?
Mission Hall Updates Ask & Learn Christine Shaff
Wisconsin Document Depository Program Update
Asset Management Inventorial Assets: Stand-Alone equipment items that have a cost of $2,000 or more and a useful life of one year or more Artwork & Collections.
Volume 10, Issue 3, Pages (March 2012)
E-skin–mediated assembly and wireless activation of a soft robotic hand. E-skin–mediated assembly and wireless activation of a soft robotic hand. (A) Schematic.
Fig. 4 Experimental and computational studies of various 3D structures with coherently coupled multilayers via selective bonding. Experimental and computational.
The Principles of Design
User Support Activities
A Solution for Every Network
Double Vision the art of seeing more than one thing
STATISTICAL OFFICE ROLE
Reporting frequency of significantly modulated hematologic amino acids in colorectal cancer. Reporting frequency of significantly modulated hematologic.
Glial cell line-derived neurotrophic factor (GDNF) overexpression exacerbates carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Glial cell line-derived.
Study on techno-economics of HIP deployment
10 a.m. - 3:30 p.m. | RIM Park, Waterloo
Course Syllabus: Math 180 Course 2 & 3
Your UBRP Summary Report Title
Transcription de la présentation:

Machine Learning Techniques Prabhas Chongstitvatana Faculty of Engineering Chulalongkorn university

More Information Search “Prabhas Chongstitvatana” Get to me homepage

Part 1 Connectionist approach

Perceptron Rosenblatt, 1950

Multi-layer perceptron Michael Nielsen, 2016

Sigmoid function

Artificial Neural Network 3-layer

Digit recognition NN 24x24 = 784 0.0 white 1.0 black

Training NN Backpropagation is a fast way to compute this, 1986

Convolutional Neural Network 3 main types of layers Convolutional layer Pooling layer Fully Connected layer

First layer Drawing by Michael Zibulevsky

Feature map

Pooling operation

Activation function

Convolutional Neural Network

CIFA-10 image dataset

CIFA-10 dataset CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. 

Example (CIFA-10 images) input 32x32x3 32x32 pixel with 3 color R G B conv 32x32x12 12 filter relu max(0,x) same size 32x32x12 pool down sampling 16x16x12 fc compute class score (10 classes for CIFA-10)

Example of CNN layer

Convolutional layer

Parameters ImageNet challenge in 2012 images 227x227x3 convolutional layer receptive field F = 11, S = 4, with 96 filters 55x55x96 = 290,400 neurons each neuron connects to 11x11x3 = 363+1 bias weights total 290400*364 = 105,705,600 parameters

Parameter sharing Volume 55x55x96 has 96 depth slices of size 55x55 each Each slice uses the same weights Now Total 96x11x11x3 = 34,848 + 96 bias

each depth slice be computed as a convolution of the neuron’s weights with the input volume 

96 filters of 11x11x3 each Krizhevsky et al. 2012

Pooling or downsampling

Case studies LeNet. The first successful applications of Convolutional Networks were developed by Yann LeCun in 1990’s, was used to read zip codes, digits, etc.

AlexNet The first work that popularized Convolutional Networks in Computer Vision was the AlexNet, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton. The AlexNet was submitted to the ImageNet ILSVRC challenge in 2012. deeper, bigger, and featured Convolutional Layers stacked on top of each other

ZF Net The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and Rob Fergus. expanding the size of the middle convolutional layers and making the stride and filter size on the first layer smaller.

VGGNet The runner-up in ILSVRC 2014 was the network from Karen Simonyan and Andrew Zisserman that became known as the VGGNet. Its main contribution was in showing that the depth of the network is a critical component for good performance.

ResNet Residual Network developed by Kaiming He et al. was the winner of ILSVRC 2015. It features special skip connections and a heavy use of batch normalization. ResNets are currently by far state of the art Convolutional Neural Network models and are the default choice for using ConvNets in practice (as of May 10, 2016).

Sample of work done by Connectionist

Object Recognition

AlphaGo vs Lee Seidol, March 2016

Alpha Go Deep learning Monte Carlo Tree search  "Mastering the game of Go with deep neural networks and tree search". Nature. 529 (7587): 484–489. Deep learning Monte Carlo Tree search

Tools for convolutional neural network convnet mathlab theano cpu/gpu pylearn2 in python tensorflow google, open source caffe wavenet generate human speech, by deep‌mind catapult microsoft, special hardware