Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.

Slides:



Advertisements
Présentations similaires
Poser des questions Asking questions.
Advertisements

Comment ils sappellent?. Jaime / je déteste habiter dans ma région Le but: In this lesson you will learn how to say why you like / dislike living.
Les pronoms relatifs Objective: Learn to use more interesting and more complex sentences in French.
Defence R&D Canada R et D pour la défense Canada Novel Concepts for the COP of the Future Denis Gouin Alexandre Bergeron-Guyard DRDC Valcartier.
and a justification for level 4
Une Amie Un Ami Français I.
Chapitre 1 Structure.
How to solve biological problems with math Mars 2012.
Les choses que j aime Learning Objective: To know how to use j aime to talk about things I like to do.
Laboratoire de Bioinformatique des Génomes et des Réseaux Université Libre de Bruxelles, Belgique Introduction Statistics.
L’ensemble microcanonique
Passé Composé Teagan Ringstad.
L’inversion --another way to make a question.. What are some ways to form a question? Est-ce que... N’est-ce pas? Voice inflection.
Bonjour!! Pour être prêt: Répondez aux questions:
Energy optimization in a manufacturing plant Journée GOThA Ordonnancement avec contraintes d’énergie et/ou de ressources périssables LAAS-CNRS Toulouse.
Laboratoire des outils informatiques pour la conception et la production en mécanique (LICP) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 1 Petri nets for.
Les verbes en -er. –er 5000 –er verbs !!!  They are called REGULAR verbs because about 5000 verbs have the same endings.  It’s a good idea to learn.
C’est combien ? Les euros
Le passé composé The perfect tense Eg: J’ai mangé une pizza I have eaten/ate a pizza.

Lterrilllincolnshire.wikispaces.com. I can Yes With some help Not yet identify where rainforests are found in the world identify common features found.
THE ADJECTIVES: BEAU, NOUVEAU AND VIEUX 1.
BENCHMARK JOBS Marie-Laure Rivier – January 2015.
Forming questions in French
Introduction Définir Planning. L’agent Planning. Représentation pour l’agent planning. Idées derrieres l’agent planning.
Les Mots Interrogatifs
Effets sur la santé des champs électromagnétiques basse fréquence
FREE HEALTH CARE AND RISK OF MORTALITY ON UNDER 5 YEARS OLD CHILDREEN IN BURKINA FASO : EVIDENCE FROM SAPONE HDSS By Malik LANKOANDE Msc Demography Projet.
2 Le verbe « être » au pluriel Les normes: Communication 1.2 Comparisons 4.1 Les questions essentielles: - What are the plural subject pronouns in French?
Les verbes réfléchis -au présent -à l’impérative (command) -avec l’infinitif Rouge, Unit 1, Part 1 Page 44.
Anitha sivaganesh foyer 140
Year 10. Bon appetit unit. Introducing ‘en’. ‘en’ – ‘some of it’ or ‘some of them’ ‘En’ is a small but important word in French that is commonly used.
Structures de données et algorithmes – TP7 Maria-Iuliana Dascalu, PhD
Les pronoms objets Mme Zakus. Les pronoms objets When dealing with sentences, subjects are part of the action of the verb. In other words, they “ do ”
Irregular Adjectives Not all adjectives are made the same.
Les verbes réfléchis.
Université d’Ottawa - Bio Biostatistiques appliquées © Antoine Morin et Scott Findlay :05 Asymétrie fluctuante.
Welcome everyone.
Object pronouns How to say “him”, “her”, “it”, “them”
University of Ottawa - Bio 4118 – Applied Biostatistics © Antoine Morin and Scott Findlay 24/07/2015 2:29 PM Bootstrap et permutations.
Activité de Commencement Qu’est que tu as fait pendent le weekend? Please have a response ready! Je suis allé(e) chez mon ami…. (I went to my friend ________’s)
Salut, les copains! French 1, Chapter 1-1.
Verb  a word that show action or a state of being.  Examples: run, jump, play, talk, listen  In English, we just the verb “to be” to describe how people.
The Passé Composé Regular verbs with avoir Look at the following 3 sentences. Ali played football yesterday They have visited Paris 3 times We did tidy.
Unité 6 Leçon B. Forming yes/no questions  To form a yes/no question in French in the simplest way, add a question mark at the end of the sentence, and.
Clique Percolation Method (CPM)
It’s.  Both C’est and Il est/Elle est can mean it’s.  There are specific times to use each.
OBJECT PRONOUNS WITH THE PASSÉ COMPOSÉ Page 122. Placement  With all object pronouns, placement is the same. DirectIndirectPlaces De+ nouns or ideas.
Negative sentences Questions
Les normes: Communication 1.1 – Understanding the spoken and written language Comparisons 4.1 – Understanding the nature of language through comparisions.
1 Linear Prediction. 2 Linear Prediction (Introduction) : The object of linear prediction is to estimate the output sequence from a linear combination.
1 Notes de Grammaire 1 Les nombres de 30 à 60 trente trente et un trente-deux trente-trois trente-quatre trente-cinq trente-six trente-sept trente-huit.
Three-Phase Inverters Consider three single-phase inverters in parallel, driven 120° apart.
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
Electronic Instrumentation Lecturer Touseef Yaqoob1 Sensors and Instrumentation Sensors and Instrumentation.
IP Multicast Text available on
Mon enfance Quand tu étais petit, tu étais comment?
Strengths and weaknesses of digital filtering Example of ATLAS LAr calorimeter C. de La Taille 11 dec 2009.
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
Leadership Styles Mrs. Keith Main Types of Leadership Styles 1.The Autocratic or Authoritarian Leader 2.The Democratic or Participative Leader.
High-Availability Linux Services And Newtork Administration Bourbita Mahdi 2016.
J’aime ma culture francophone, j’aime notre façon d’être, notre joie de vivre, nos traditions, nos manies. Je veux que mes enfants vivent ça et qu’ils.
J’aime ma culture francophone, j’aime notre façon d’être, notre joie de vivre, nos traditions, nos manies. Je veux que mes enfants vivent ça et qu’ils.
Roots of a Polynomial: Root of a polynomial is the value of the independent variable at which the polynomial intersects the horizontal axis (the function.
Le verbe « être » au pluriel
The ICA Formula and Double Slope S-N curves 26/04/2019
1 Sensitivity Analysis Introduction to Sensitivity Analysis Introduction to Sensitivity Analysis Graphical Sensitivity Analysis Graphical Sensitivity Analysis.
Over Sampling methods IMBLEARN Package Realised by : Rida benbouziane.
Transcription de la présentation:

Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI

Outline: -Introduction  problem and motivation -Formulation of the problem -Results and Algorithms -Exemples and comparisons -Summary

Formulation of the problem Results and Algorithms Examples summaryintroduction

A- Target Impulse Response Target Impulse response h(t) Input e(t) output v(t) Receiver filter Impulse response r(t) y s (t) introducti on Results and Algorithms Examples Summary Formulation of the problem

B- Optimal detection waveform Given : - A target impulse response h(t) - stationary additive Gaussian noise n(t) with power spectral density S nn (f). find : - waveform x(t) with total energy E x - receiver-filter impulse response r(t) such that the signal-to-noise ratio (SNR)of the receiver output y(t) is maximized at time t o. Constraints: -Restrict the waveform x(t) such that it is zero outside the interval [-T/2, T/21 -x(t) with total energy E x introducti on Results and Algorithms Examples Summary Formulation of the problem

C- Optimal estimation waveform Given : a Gaussian target ensemble with random impulse response g(t) having spectral variance σ 2 G (f) find : - waveform x(t) that maximize the mutual information I ( y(t) ; g(t)/x(t) ) in additive Gaussian noise with one-sided power spectral density P nn (f). Constraints: -Restrict the waveform x(t) such that it is zero outside the interval [-T/2, T/21 -x(t) with total energy E x, confined in (one-sided) frequency to W = [f 0,f 0 +W] introducti on Results and Algorithms Examples Formulation of the problem Summary

A- Results on Detection Waveforms (theorem 1): introduction Results and Algorithms Examples summary Formulation of the problem

A- Results on Estimation Waveforms (theorem 2): a) c) The resulting maximum value I max (y(t);g(t)/x(t)) : b) A is found by solving the equation : introduction Results and Algorithms Examples summary Formulation of the problem

Example 1: Detection Waveforms the effect of various waveforms with identical energy on the output SNR: introduction Results and Algorithms summary Formulation of the problem Examples

Example 1: Detection Waveforms introduction Results and Algorithms summary Formulation of the problem Examples

Example 2: Detection Waveforms - Problem: detecting a perfectly conducting metal sphere of radius a -use two waveforms, both with unit energy : 1-pulse sinusoid waveform with its associated matched filter. 2- optimal waveform/receiver-filter pair introduction Results and Algorithms summary Formulation of the problem Examples

Example 2: Detection Waveforms Comparison of the output SNR for the two resulting waveforms: introduction Results and Algorithms summary Formulation of the problem Examples

Example 3: estimation Waveforms examine the characteristics of the optimal transmitted signal’s spectrum and the amount of information obtained. -target at a range of 10 km. -Monostatic radar with an effective area A e = 3 m², -Frequency interval : W = [f 0, f 0 + W] = [0.995 GHz, GHz]. constraints: -average power ranging from 1 W to 1000 W. -observation times ranging from 10 μs to 100 ms. introduction Results and Algorithms summary Formulation of the problem Examples

Example 3: estimation Waveforms introduction Results and Algorithms summary Formulation of the problem Examples

Example 3: estimation Waveforms introduction Results and Algorithms summary Formulation of the problem Examples

Comparison of Detection and Estimation Waveforms: introduction Results and Algorithms summary Formulation of the problem Examples

Comparison of Detection and Estimation Waveforms: -optimal target detection: put as much energy as possible into the mode of the target that gave the largest response, with respect to the noise. - optimal estimation distributes the available energy in order to maximize the information obtained about the target. introduction Results and Algorithms summary Formulation of the problem Examples

Idea: exploiting resonance phenomena to provide max SNR. The maximum signal-to-noise ratio occurs when the mode of the target with the largest eigenvalue is excited by the transmitted waveform. the shape of a radar signal, and not just its energy alone, can have a significant effect on extended target detection performance. other scattering modes of the target may be useful for identifying or characterizing the target. introduction Results and Algorithms Examples Formulation of the problem Summary

Theorem 2 describes how to distribute the energy in such a way that the mutual information between the target ensemble and the received waveform is maximized. the greater the mutual information, the better we would expect the radar’s classification introduction Results and Algorithms Examples Formulation of the problem Summary

#Any_ questions_?