Les lentilles minces sphériques
1. Présentation.
1. Présentation. 1.1. Définition.
1. Présentation. 1.1. Définition. Une lentille est l’association de deux dioptres dont l’un au moins est sphérique.
Air C2 O S2 C1 S1 Indice n
Dioptre 1 Air C2 O S2 C1 S1 Indice n
Dioptre 2 Air C2 O S2 C1 S1 Indice n
Air Centre de la lentille C2 O S2 C1 S1 Indice n
1.2. Lentilles minces.
1.2. Lentilles minces. Une lentille est dite mince quand son épaisseur est faible par rapport aux rayons de courbure de ses dioptres constitutifs.
C1S1 >> S1S2 et C2S2>> S1S2 1.2. Lentilles minces. Une lentille est dite mince quand son épaisseur est faible par rapport aux rayons de courbure de ses dioptres constitutifs. On a : C1S1 >> S1S2 et C2S2>> S1S2 On considère alors l’épaisseur de la lentille comme négligeable, et que S1 et S2 sont confondus avec O.
Différents types de profils de lentilles :
2. Marche des rayons lumineux dans une lentille.
2. Marche des rayons lumineux dans une lentille. 2.1. Lentille convergente, lentille divergente.
Lentille biconvexe
Rayon incident
Normale
Rayon réfracté
Normale
Rayon réfracté
Le rayon converge vers l’axe : la lentille est convergente
Lentille biconcave
Le rayon s’éloigne l’axe : la lentille est divergente
2.2. Foyers d’une lentille.
2.2. Foyers d’une lentille. Le foyer objet F est le point de l'axe optique tel que tout rayon passant par F sorte parallèle à l'axe optique.
2.2. Foyers d’une lentille. Le foyer objet F est le point de l'axe optique tel que tout rayon passant par F sorte parallèle à l'axe optique. Le foyer image F' est le point de l'axe optique tel que tout rayon passant par F ' vienne d'un rayon incident parallèle à l'axe optique.
Distance focales : La distance focale objet est la distance entre le centre de la lentille O et le foyer objet F.
Distance focales : La distance focale objet est la distance entre le centre de la lentille O et le foyer objet F. La distance focale image est la distance entre le centre de la lentille O et le foyer objet F’.
On note :
On note : En raison de la symétrie de la lentille mince :
Les valeurs sont des valeurs algébriques et ont un signe.
Les valeurs sont des valeurs algébriques et ont un signe. Convention d’orientation : Le sens positif est fixé par le sens d’arrivée de la lumière.
Les valeurs sont des valeurs algébriques et ont un signe. Convention d’orientation : Le sens positif est fixé par le sens d’arrivée de la lumière. Lentille convergente : f’ > 0. Lentille divergente : f’ < 0.
Représentation des lentilles minces : F F’ O Lentille convergente
Représentation des lentilles minces : F’ F O Lentille divergente
2.3. Tracé de l’image donnée par une lentille.
En raison des propriétés de O, F, F’ :
En raison des propriétés de O, F, F’ : Un rayon lumineux passant par le centre O de la lentille n’est pas dévié.
En raison des propriétés de O, F, F’ : Un rayon lumineux passant par le centre O de la lentille n’est pas dévié. Un rayon lumineux incident qui passe par le foyer objet F ressort parallèlement à l’axe de la lentille.
En raison des propriétés de O, F, F’ : Un rayon lumineux passant par le centre O de la lentille n’est pas dévié. Un rayon lumineux incident qui passe par le foyer objet F ressort parallèlement à l’axe de la lentille. Un rayon lumineux incident parallèle à l’axe de la lentille ressort par le foyer image F’.
Image donnée par une lentille convergente F F ’ O B A
Un rayon passant par le centre optique O n’est pas dévié B O F ’ A F
Un rayon incident parallèle à l’axe optique… B O F ’ A F
… ressort par le foyer image F’ B O F ’ A F
Un rayon incident passant par le foyer objet F…
… ressort parallèlement à l’axe optique. B O F ’ A F
L’image A’B’ est entre l’axe et le croisement des rayons. F ’ A F B’
3. Relation de conjugaison et de grandissement des lentilles minces.
3. Relation de conjugaison et de grandissement des lentilles minces.
3.2. Relations de Newton.
B O F ’ A’ A F B’
Relations de Newton B F ’ A’ O A F I B’
Relations de Newton B J O F ’ A’ A F B’
3.2. Relations de Descartes.
Relations de Descartes B A’ O F ’ A F B’
En résumé : Relations de conjugaison de Newton.
Relations de Descartes
Notations
Les relations de Descartes s’écrivent alors : Notations Les relations de Descartes s’écrivent alors :
Remarque : la vergence
Remarque : la vergence v en dioptrie (d) ; 1 d = 1 m-1
4. Association de lentilles.
4. Association de lentilles. Deux lentilles minces L1 et L2 accolées se comportent comme une seule lentille mince.
On montre que la distance focale de la lentille équivalente est donnée par :
Deux lentilles sont considérées accolées si la distance entre elles est faible devant leur distance focale.