Adapted from Benedicto 1996 A B Return period (years) of M>=5 events Moment rate (Nm/yr) slip rate (mm/yr) fault depth (km) On the difficulty of choosing.

Slides:



Advertisements
Présentations similaires
L’Heure Telling Time.
Advertisements

How to solve biological problems with math Mars 2012.
Les choses que j aime Learning Objective: To know how to use j aime to talk about things I like to do.
L’ensemble microcanonique
C. Vigny Lesson 1 geodesy and Satellite observation of the Earth
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
What is the nanotechnology History applications of nanotechnology Conclusion.
Look at the following sentences and tell me if they are in the past or the present tense 1. I go to the swimming pool every Thursday. 1. I go to the swimming.
Bonjour!! Pour être prêt: Répondez aux questions:
Un Sourire ... Texte original en français : Raoul Follereau
Laboratoire des outils informatiques pour la conception et la production en mécanique (LICP) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 1 Petri nets for.
Impact du changement climatique sur la mousson d'Afrique de l'Ouest Philippe Quirion CNRS CIRED et LMD.
I can tell time in French!
3 Les Verbes -ER Talking about people’s activities Les normes: –Communication 1.2: Understanding the written and spoken language –Comparisons 4.1: Understanding.
Le passé composé The perfect tense Eg: J’ai mangé une pizza I have eaten/ate a pizza.
Français III projet cinématique (votre film). les critères Create a 3 minute film with a 1 minute introduction. The introduction must explain briefly.
WALT: To talk about the internet in French.
Modèles et observations Confidence in the validity of a finding is based on the type, amount, quality, and consistency of evidence (e.g., data, mechanistic.
THE ADJECTIVES: BEAU, NOUVEAU AND VIEUX 1.
BENCHMARK JOBS Marie-Laure Rivier – January 2015.
Les Mots Interrogatifs
Greetings, formal and informal
Le superlatif Comparing people and things within a group.
French 101 Important Verbs. The most important French verbs – avoir (to have), être (to be), and faire (to do/make) They are used in some of the ways.
Ile-de-France Presentation by: Victor Edgell. Ma région est Ile-de-France. La région est au nord de la France. La capital est Paris. Paris est aussi la.
2 Le verbe « être » au pluriel Les normes: Communication 1.2 Comparisons 4.1 Les questions essentielles: - What are the plural subject pronouns in French?
1 Ce document est la propriété d ’EADS CCR ; il ne peut être communiqué à des tiers et/ou reproduit sans l’autorisation préalable écrite d ’EADS CCR et.
Activities for the first week of the École 1 unit.
Unit 1 – Greetings and Salutations
Comportements des consommateurs Cours 3: L’approche psychographique
Year 10. Bon appetit unit. Introducing ‘en’. ‘en’ – ‘some of it’ or ‘some of them’ ‘En’ is a small but important word in French that is commonly used.
Les pronoms objets Mme Zakus. Les pronoms objets When dealing with sentences, subjects are part of the action of the verb. In other words, they “ do ”
Techniques de l’eau et calcul des réseaux le calcul hydrologique proprement dit Michel Verbanck 2012.
Irregular Adjectives Not all adjectives are made the same.
GREDOR - GREDOR - Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables How to plan grid investments smartly? Moulin de Beez, Namur.
Bienvenue and Welcome to Our French II Live Lesson! We will begin shortly!
Modèles d’interaction et scénarios
Hydraulic Engineering. Water Hammer Phenomenon in pipelines.
Welcome everyone.
FINANCE Distribution des rentabilités Professeurr André Farber Solvay Business School Université Libre de Bruxelles.
Object pronouns How to say “him”, “her”, “it”, “them”
Le matériel scolaire. Vocabulaire Un compas Un sac Un stylo Un cahier.
Unité 6 Leçon B. Forming yes/no questions  To form a yes/no question in French in the simplest way, add a question mark at the end of the sentence, and.
Nous parlons des matières Buts: To be able to give extended opinions on school subjects To express agreement or disagreement.
Verb Conjugation Learning to conjugate your first verb in French.
The comparative and superlative b In this lesson you will learn how to use the comparative and superlative in a sentence. b 1. We will discuss the translation.
Flash-on-flash-off! You will see some French text in a minute but it will only be on the board for a minute then it will disappear.
Nous habitons Objective: To be able to give and understand information about where people live. Play the powerpoint – copy down the phrases in French &
Fabien Plassard December 4 th European Organization for Nuclear Research ILC BDS MEETING 04/12/2014 ILC BDS MEETING Optics Design and Beam Dynamics Modeling.
Clique Percolation Method (CPM)
Bell Ringer: Qu’est-ce que tu manges? What do you eat? Write what you eat for lunch using the images & your memory/notes/packet: Pour le déjeuner je mange……
O WHY IS IT IMPORTANT TO PLAN AHEAD FOR THE FUTURE?
1 Linear Prediction. 2 Linear Prediction (Introduction) : The object of linear prediction is to estimate the output sequence from a linear combination.
Resource allocation: what can we learn from HPC? 20 janvier 2011 Vincent Breton Crédit: Catherine Le Louarn.
DESSINER ET GRIFFONNER LES LIGNES ET LES FORMES. Useful Verbs Utiliser – to use Créer – to create Représenter – to represent Donner – to give Démontrer.
Le Passif...getting to know the Passive Voice in French!
Put these phrases into 4 categories, and decide on a title for each category. There may be more than one possible answer! boire de l’eau manger des fruits.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
 Components have ratings  Ratings can be Voltage, Current or Power (Volts, Amps or Watts  If a Current of Power rating is exceeded the component overheats.
l y a which we have already learned means “there is/are l y a which we have already learned means “there is/are.” When we put a measure of time.
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics.
Arch. Hydrobiol. I 100 I I Stuttgart, Mai 1984
Leadership Styles Mrs. Keith Main Types of Leadership Styles 1.The Autocratic or Authoritarian Leader 2.The Democratic or Participative Leader.
Quelle est la date aujourd’hui?
1 Sensitivity Analysis Introduction to Sensitivity Analysis Introduction to Sensitivity Analysis Graphical Sensitivity Analysis Graphical Sensitivity Analysis.
Les Mots Intérrogatifs
Lequel The Last Part.
Transcription de la présentation:

Adapted from Benedicto 1996 A B Return period (years) of M>=5 events Moment rate (Nm/yr) slip rate (mm/yr) fault depth (km) On the difficulty of choosing the appropiate earthquake recurrence model Let us assume that activity rates,  can be deduced from slip rates using : - Maximum magnitude Mmax = log10(S) - Seismic moment rate - Seismic moment M o (m)=10 (cM+d) where v is the slip rate, S is the surface of the fault,  the rigidity modulus. We then apply three models available in the literature to compute the probability density functions for magnitude (as defined by Stewart et al., 2001). Conclusions Using the Durance fault segment as an example we showed -that it is the uncertainty in earthquake recurrence models that has the greatest impact on return period estimates compared to seismicl data. - that the large contribution to the hazard of low probability ground motions allows lower magnitude bins to contribute down to very low probability levels. We thus emphasize the crucial role of intermediate magnitude earthquakes in hazard assessment as well as the need to find measurable field parameters that may be injected in numerical models to help discriminate among the different seismicity models for faults in moderate seismicity regions. Benedicto A. ; 1996 : Modèles tectono-sédimentaires de bassins en extension et style structural de la marge passive du Golfe du Lion (partie nord), sud-est de la France. PhD thesis, Univ. Montpellier, 235 pp Ghafiri A. (1995). Paléosismicité de failles actives en contexte de sismicité modérée: application à l'évaluation de l'aléa sismique dans le Sud-Est de la France. Thèse de Doctorat, Univ. Paris XI, 337 pages J. P. Stewart, S.J. Chiou J., D. Bray R.W., Graves, P. G. Somerville and N. Abrahamson (2001) Ground Motion Evaluation Procedures for Performance-Based Design. PEER Report 2001/09. Which seismic hazard level and scenarios for such faults? 1E-7 1E-6 1E-5 1E-4 1E-3 1E Peak Ground Acceleration (cm/sec2) Annual occurrence GR CE YC Mmax=5.0 Attenuation relationship Abrahamson and Silva (1997) Reverse faulting ; 3  Hazard levels and hazard scenarios vary strongly due to uncertainty in both recurrence models and activity rate estimates of intermediate magnitude events Deagregation of hazard for a annual probability level On the estimation of earthquake recurrence along faults and the crucial role of intermediate magnitudes in seismic hazard assessment O. Scotti, C. Clement and F. Bonilla Institut de Radioprotection et Sûreté Nucléaire, Bureau d'Evaluation du Risque Sismique BP FONTENAY-AUX-ROSES – FRANCE 1000 years Let us consider, for exemple, the Durance fault system in SE France Seismological and structural data: length: 60 km segments: 10 km long seismogenic depth :5 to 10 km slip motion: strike-slip to reverse slip rate: 0.07 (GPS) to 0.2 mm/yr (geological markers) one M>6 paleo-earthquake four M~5 historical events (~every 100 years ) few 2<M<3 instrumental events in the last 5 years A B IRSN/BERSSIN permanent GPS Seismic stations On the difficulty of estimating activity rates: which is more reliable, catalogue data or slip rates? Let us now use instead the historical record, which suggests M~5 events recur every 100 years along a segment of the fault. Assuming such events can occur anywhere along the fault and that they represent the maximum magnitude events, then their return period on a single fault segment can lower to 500 years. But which is the physical reason to limit Mmax at M~5? Fault maturity? Strain rate? truncated exponential (GR), characteristic (YC) and maximum magnitude (CE) probzility density fonctions Assuming a 10 km long and 10 km deep vertical fault segment and a slip rate of 0.07 mm/yr, seismic hazard is calculated for a site located at a distance of 10 km, using the activity rates and recurrence models discussed above. The seismologiacl and structural data allows to formulate a variety of hypotheses on the geometry and slip rates. Here we show the resulting return period estimates of M>=5 events for a 10 km long segment. In spite of the important uncertainty in the seismological data, the key uncertainty is the choice of the most adequate earthquake recurrence model. The GR model, which is rarely used in practice, leads to the highest return period estimates in this approach.Which is the most adequate recurrence model that best describes Durance-type faults? GR, YC or CE? P P From Ghafiri, 1995 ~25000 years old M>6 event P

Choosing the appropriate earthquake recurrence model: GR,YC and/or CE? Input data: Geometry of segment 3 (M~6 vertical fault), slip rates (v) and a regional b-value Given Seismic moment rate: and Seismic moment: Mo(m)=10 (cM+d) (S = segment surface;  =rigidity modulus; i=segment 3; M=magnitude) the activity rate (  can be estimated by distributing the moment rate following the GR, YC and CE recurrence models. For acceptable depth and slip rates hypothesis, resulting return period estimates vary by 50 to 80% a given recurrence model, Uncertainty in the choice of the recurrence model, however, reaches 100%. Conclusions Using the Durance fault as an example we showed that : 1. Using catalogues to estimate return periods of earthquakes in regions of moderate–to-low seismicity is delicate and subjected to the “hazard” of the catalogue window. 2. On the other hand, return periods of intermediate magnitude events estimated through slip rates and fault geometries depend strongly on the choice of the recurrence model. 3. Segment 3 appears to be more GR-like, but what can be said of the other segments? The GR model is the least commonly used recurrence model in seismic hazard assesment studies. Why? How to discriminate among the different seismicity models for Durance-type faults? Which are the key parameters? It is important to provide answers to these questions because: 3. Intermediate magnitude events contribute to the hazard down to very low probabilities due to the strong contribution of high epsilons. 4. Scenarios resulting from GR-models are very different than those resulting from YC or CE recurrence models. Impact of recurrence models and on seismic hazard estimations? Uncertainty in recurrence models, as well as in the estimation of “observed” activity rates combined with ground motion variability lead to great differences in hazard estimates and in the scenarii that contribute the most to the hazard. Deagregation of hazard for a given target level On the estimation of earthquake recurrence along faults and the key role of intermediate magnitudes in estimatic seismic hazard O. Scotti, C. Clement and F. Bonilla Institut de Radioprotection et Sûreté Nucléaire, Bureau d'Evaluation du Risque Sismique BP FONTENAY-AUX-ROSES – FRANCE Less than 10 events of 2<M<3 have occured in 5 yrs along segment 3, 2 and 5; 4 M~5 historical events and one M~6 paleoearthquake on segment 3; segment 1 and 4 appear to be “inactive”. Although the seismicity record may not be sufficiently long to capture the steady-state behaviour of the entire fault system, the seismic behaviour of segment 3 appears more compatible with a GR-type recurrence model. Assuming the entire fault is active, should we apply the GR model to the other segments as well? Is this behaviour typical of low strain-rate faults? Alternatively, is the absence of seismicity evidence of their CE-character? Example of hazard curves for segment 3. Hazard is calculated for a 10 km distant site using the attenuation relationship of Abrahamson and Silva (1997), three recurrence models with Max=6.5 and = 2,09e+14 Nm/yr. Consider, for example, the seismological and tectonic setting of the Durance fault system in SE France IRSN/BERSSIN permanent GPS Seismic stations years LengthDepthSlip motionSlip rate (mm/yr)5 Segments km5-10 kmreverse to strike-slip0.07 (GPS) to 0.2 (geological)~10 km long (geophys./cartog.) SeismicityLocation M> yrs old Segment 3 M~5 4 in the last 400 yrs Segment 3 2<M<3 < 10 in 5 yrs Mostly on segments 2,3,5 truncated exponential (GR) characteristic (YC) maximum magnitude (CE) Moment rate (Nm/yr) fault depth (km) slip rate (mm/yr) Return period (years) of M>=5 Seismicity models for a given moment rate and geometry The 4th International Workshop on Statistical Seismology 9-13 January 2006 Japan Are there parameters other than seismicity that can be considered as indicative of each recurrence model? Which model is more compatible with the seismicity catalogue?

    Sismicité instrumenta le sur la FMD                                      ’                ’                               –           ’      

.

Représentation simplifiée du système de failles FMD – support de modélisation - quantification 2. Potentiel sismique de la FMD 1. Paléosismologie 2. Dimension de la faille a)Segment ation b)Géométr ie 3D c)Enracine ment ? 3. Vitesse de la faille

Benedicto, 1996 (modified) Décalage de la base du Miocene depuis 20 ma Durance (v) Hippolyte & Dumont, 2000 Décalage verticale de la base du chevauxhement de la nappe de Digne (6ma) Valavoir e (NE Sisteron) 0.1 (v) Cushing et al., 1997Décalages de cours d’eau Manosq ue (h) Baroux, 2000 Etude géomorphologique, modélisation de la déformation de l’anticlinal de Manosque Manosq ue fold 0.11 (v) Ghafiri, 1995 Tranchée de Paléosismicité à Valvéranne, séisme entre 25 et 9 ka Manosq ue (v) Siame et al Datation de terrasse en utilisant les isotopes cosmogéniques Manosq ue 0,02 – 0,11 (v) Nockey,2005 GPS permanent depuis 4 ans St- Michel- l’O. - Ginasser vis 0,05 (h) Exemples d’études permettant de quantifier la vitesse de la faille AuteurMarqueur/mét hode LieuVitess e mm/a 2. Potentiel sismique de la FMD 1. Paléosismologie 2. Dimension de la faille a)Segment ation b)Géométri e 3D c)Enracine ment ? 3. Vitesse de la faille

Sismicit  r  guli  re mod  r  e M ~ 5  5,5 Vitesse de glissement par diff  rentes approches de l ’ ordre de 1/10e mm/an Faille segment  e ( km) Magnitude >= 6,5 Conditionn  e par la profondeur d ’ initiation de la rupture P  riode de retour des s  ismes majeurs de l ’ ordre de ans. ! On ne conna  t pas le comportement des failles lentes. Si toute la faille casse, la magnitude peut atteindre 7. P  riode de retour plus longue CONCLUSION

Adapted from Benedicto 1996 A B Let us consider, for example, the Durance fault system in SE France: Seismological and tectonic setting IRSN/BERSSIN permanent GPS Seismic stations A B 1000 years P From Ghafiri, 1995 ~25000 years old M>6 event LengthSeismogenic depth (km)Slip motionSlip rate (mm/yr)Number of Segments 60 kmGeologic cross-section: 5 km ? Seismicity: 5-10 km Geological:reverse Instrumental: s/s GPS: 0.07 Geological: geophysical lines ~10 km long SeismicityLocation M>6: 1 based on paleo Segment 3 M~5: 4 in last 400 yrs Segment 3 M<3: less than 10 in 5 yrs All segments P P