LA STATIQUE DES FLUIDES

Slides:



Advertisements
Présentations similaires
Exemples d’applications de la 2ème loi de newton
Advertisements

Résistance des Matériaux
CINEMATIQUE.
Comment éviter le basculement d’un corps?
Chapitre III : DYNAMIQUE DU POINT
Résistance des Matériaux
Caractéristiques de quelques forces
Chapitre P03: Caractéristiques de quelques forces
Les théorèmes généraux
La corde vibrante I) Equation de la corde vibrante 1) Le modèle.
Les potentiels thermodynamiques Les fonctions caractéristiques
Caractéristiques de quelques forces
STATIQUE DU SOLIDE Les actions mécaniques.
Exercice n°34 page 164 Étude de la chute d’une balle de tennis de masse m = 58 g et de rayon r0=3, m et de volume V0. A la date t=0, la balle est.
Lois de la statique Equilibre des solides.
Le milieu physique.
Cours Électricité – Électronique MIP_B
LES FLUIDES.
Chapitre 2. Les lois de Newton
Mémoire de Projet de Fin d’Etudes
Deuxième Loi de Newton Chapitre 5.
Chute verticale avec frottement
III: Hydrostatique des fluides
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
EXERCICE II : Le rugby, sport de contact et d’Évitement (8 points)
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
Généralités sur les actions mécanique Cours de méca TGMB1.
Troisième séance de regroupement PHR004
Forces centrales et mouvement des planètes:
Electrostatique- Chap.2 CHAPITRE 2 CHAMP ELECTROSTATIQUE Objectif :
Potentiel électrostatique
COURS DU PROFESSEUR TANGOUR BAHOUEDDINE
Actions mécaniques 1-Définition d’une action mécanique
Filière AgroAlimentaire
CHAPITRE 3: DYNAMIQUE DES FLUIDES INCOMPRESSIBLES PARFAITS
La thermodynamique statistique
Modélisation des Actions Mécaniques
Caractéristiques de quelques forces
Physique et atmosphère : force de gradient de pression
Aspects énergétiques des systèmes mécaniques.
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
Dynamique Cours de mécanique TGMB1.
Electrostatique - Magnétostatique- Induction Electromagnétique
Lycée MM Fourcade Gardanne Mécanique des fluides HYDROSTATIQUE.
CHARGEMENT, CENTRAGE ET STABILITE LONGITUDINALE
Univers non vivant Matière et énergie
3 COURS DE thermodynamique (Module En 21) 13/04/2017
Unité 3: Les Fluides Chapitre 9: L’action des forces sur le
INTRODUCTION A LA MECANIQUE DES FLUIDES
Application des Lois de Newton aux mouvements
LA STATIQUE DES FLUIDES
Thermodynamique Avancée
Éléments cinétiques des système matériels
LES LOIS PHYSIQUES N2 et N3
Chapitre 9 : Les forces Les objectifs de connaissance :
CHAPITRE 1 : STATIQUE DES FLUIDES
Hydrothérapie et principe d’Archimède
Terminale Si Dynamique Lionel GRILLET.
La gravitation universelle
Chapitre 17 : La pression Les objectifs de connaissance : ; .
Partie 2 Forces pressantes
Université Mohamed Premier
Géophysique Licence SVTU Pourquoi ?. Géophysique Licence SVTU Séance 1 Séance 2 Séance 3 Séance 4 Séance 5 Géothérmie et Tomographie Principes et généralités.
Equilibre d’un solide.
Université Mohamed Premier
Statique analytique.

Forces et mouvements. Le mouvement et les forces Le mouvementLe mouvement La modification du mouvementLa modification du mouvement Les types de forcesLes.
LA STATIQUE DES FLUIDES
GEOMETRIE DU FLOTTEUR 1 A.NAGUIB. 2 Définitions Définitions  Plan de flottaison ou flottaison  Plan de flottaison ou flottaison  Aire ou surface de.
Transcription de la présentation:

LA STATIQUE DES FLUIDES MECANIQUE DES FLUIDES LA STATIQUE DES FLUIDES Année universitaire 2003-2004 (Premier semestre)

I. Lois générales de la statique des fluides (Nicolas Battaglia) Forces de pression dans un fluide a. Mise en situation b. Définition c. Remarque 2. Pression en un point d’un fluide

Equations générales de la statique des fluides a. Traduction de l’équilibre des forces - Des forces de volume (pesanteur ou inertie), - Des forces surfaciques (forces de pression). b. La notion de force volumique équivalente de pression c. L’équation fondamentale de la statique d. Remarques

Théorèmes généraux a. Théorème 1 (Pour un fluide en équilibre) Les surfaces équipotentielles sont des surfaces isobares, et réciproquement. b. Théorème 2 (Pour un fluide en équilibre) Les surfaces équipotentielles sont des surfaces isochores (réciproque fausse). c. Théorème 3 (Pour un fluide en équilibre) Les surfaces équipotentielles sont des surfaces isothermes (réciproque fausse).

Théorème d’Archimède a. Mise en situation et démonstration b. Enoncé du théorème c. Cas du solide totalement immergé - Solide homogène, - Solide non homogène. d. Cas du solide partiellement immergé

6. Forces de pression uniforme (Martin Panhard) Entre deux points peu éloignés dans la direction du champ de pesanteur, la pression est uniforme et vaut P0. Théorème : Soit une surface fermée (S) située dans un domaine (D) où règne une pression uniforme p0 ; le système des forces de pression s’exerçant sur la surface constitue un torseur nul. Le théorème précédent nous conduit à négliger l’influence de la pression atmosphérique tant que nous la considérons comme uniforme dans le domaine que nous considérons. Ainsi, supposer la pression uniforme dans un domaine fluide, revient à négliger la poussée sur un corps immergé dans ce domaine.

II. Hydrostatique (statique des fluides à masse volumique constante) Hypothèses de base de l’hydrostatique Le champ des forces à distance se réduit au champ de pesanteur, supposé constant dans la masse fluide considérée. La pression atmosphérique est la même en tout point du petit domaine que l’on considère, ce qui revient, comme on l’a vu, à négliger la poussée de l’air. La masse volumique du fluide est indépendante de sa pression (fluide incompressible).

Théorèmes généraux de l’hydrostatique Surface libre Une masse de liquide a un volume constant. Donc, dans un vase, il existe une surface de séparation avec l’atmosphère, dite surface libre. Relation fondamentale de l’hydrostatique La différence de pression entre deux points B et A est : Transmission de pression Dans un liquide en équilibre, une variation de pression se transmet intégralement. Liquides superposés La surface de séparation de deux liquides non miscibles est plane et horizontale. La stabilité de l’équilibre exige, en outre, que les couches de liquide se placent les unes au-dessus des autres par ordre de densité décroissante.

7. Force de pression sur paroi (Pierre Chouteau). a 7. Force de pression sur paroi (Pierre Chouteau) a. Paroi plane, baignée sur une face par l’atmosphère : Les forces de pression exercées sur une paroi plane baignée, d’un côté par le liquide en équilibre et, de l’autre par l’atmosphère admettent une résultante F :   - normale à la paroi et dirigée du fluide vers l’extérieur - dont le point d’application P est donné par la formule - dont le module F est donné par la formule F = ρg.zG’A

Théorème : si les forces à distance se réduisent aux forces de pesanteur, les forces de pression exercées par le liquide sur les parois du vase admettent une résultante égale au poids total du fluide contenu dans le vase. Corollaire: la projection Fx sur une direction horizontale Ox de la résultante des poussées élémentaires suivant Ox est égale à la poussée hydrostatique s’exerçant sur la projection Sx de la surface sur un plan perpendiculaire à la direction Ox.

2. Théorème d’Euler : surface de flottaison (Julien Agache) III. Flotteurs 2. Théorème d’Euler : surface de flottaison (Julien Agache) Énoncé : Le centre de flottaison correspondant à une position d’équilibre du flotteur est aussi le centre de flottaison pour une position isocarène infiniment voisine. Autrement dit, au cours d’un déplacement isocarène infiniment petit de flotteur, le centre de flottaison reste fixe. Corollaire : Les flottaisons isocarènes admettent une surface enveloppe qui est touchée par chacune d’elles au centre de flottaison correspondant. Cette surface enveloppe est donc la surface de flottaison. Généralisation : Le théorème précèdent s’applique d’une manière plus générale, à des volumes égaux d’une masse constante que l’on limite en haut par une surface plane horizontale, par exemple, à une masse liquide invariable contenue dans un vase que l’on incline d’un petit angle, la surface intérieur du vase jouant alors le rôle des parois du flotteur.

3. Théorème de Dupin : surface de poussée Énoncé : Le plan tangent à la surface de poussée au centre de poussée P est parallèle à la flottaison correspondant au centre de poussée P Corollaire I : La poussée, qui passe par le centre de poussée P, est une force verticale, donc normale à la flottaison qui est horizontale et, par suite, normale aussi au plan tangent en P à la surface de poussée qui est parallèle à la flottaison. Ainsi, la normale à la surface de poussée en chaque point P est le support de la poussée correspondant à la carène de centre de poussée P. Cette proposition conduit à considérer l’ensemble des supports des poussées correspondant à des positions isocarènes d’un flotteur comme une congruence de droites normales à une même surface qui est la surface de poussée.

Corollaire II Quand le flotteur est en équilibre, le poids et la poussée ont même support vertical. Ce support commun passe par le centre d’inertie du flotteur et est normal à la surface de poussée. Nous trouverons donc les orientations d’équilibre du flotteur pour un arrimage déterminé, c'est-à-dire pour un centre d’inertie déterminé, en menant, du centre d’inertie, les normales à la surface de poussée. Il y a équilibre quand l’une de ces normales est verticale. En désignant par V, le volume de la carène et par v le volume d’un onglet, on a la relation :

4. Métacentres On considère les positions isocarènes déduites les unes des autres par des mouvements tels que l’axe instantanée d’inclinaison soit constamment horizontal et parallèle au plan longitudinal (mouvement de roulis). Au cours de ces mouvements, le centre de poussée reste sensiblement dans un plan vertical et perpendiculaire au plan longitudinal, dit plan transversal ; le lieu de ces centres est une courbe (C), que nous appellerons courbe de poussée de roulis. On considère les positions isocarènes déduites les unes des autres par des mouvements tels que l’axe instantané d’inclinaison soit constamment perpendiculaire au plan longitudinal, nous pouvons définir une courbe métacentrique de tangage, et un métacentre de tangage.

Positions des métacentres de roulis et de tangages: Avec I : le moment d’inertie de la flottaison par rapport à l’axe instantané d’inclinaison Toutefois le rayon métacentrique de tangage est plus grand que le rayon métacentrique de roulis. En effet, le moment d’inertie du tangage est supérieur à celui du roulis et le volume est le même.

5. Stabilités de l’équilibre (Jean Molines) G est au dessus de M,  < 0 R – a < 0 => équilibre instable

=> équilibre stable M est au dessus de G,  > 0 R – a > 0 => équilibre stable

6. Notions sur le mouvement d’un flotteur 1. Équation de mouvement Équation du mouvement: J.d²/dt² = - m.g.(R-a). Mouvement périodique de période

2. Chavirement Si A2>A1, retour en position d’équilibre Si A2<A1, Chavirement

IV. Statique des fluides compressibles 3. Les gaz (Emmanuel Girault) - Loi élémentaire de variation de pression atmosphérique - Loi de variation de pression dans une atmosphère isotherme pz la pression à l’altitude z, Tm la température considéré constante à cette altitude, H0 et p0 l’altitude et la pression de référence. - Loi de variation de pression dans une atmosphère où la température varie linéairement

- Atmosphère-type 0 < z < 11 000 m , Z > 11 000 m, mm de Hg kg/m3 kg/m3 ou tirée des deux équation précédentes

4. Les ballons (Nicolas Moreau) Les ballons fermés : Ballons sondes Rupture d’équilibre avec le poids volumique initial Ballons flasques au sol à enveloppe extensible C’est un ballon dont l’enveloppe se gonfle avec son élévation. Il possède une structure rigide pour maintenir l’enveloppe Ballons toujours tenus à enveloppe inextensible Ce ballon, de par son enveloppe ne peut éclater, il flotte à un altitude plus ou moins constante (variation avec le rayonnement solaire)

Les ballons ouverts Surpression dans un ballon Lorsque l’on se positionne en deux points du ballon, on a : Pouvoir ascensionnel La force ascensionnelle provoquée par les surpressions, rapportée à l’unité de volume est verticale et dirigée vers le haut : avec la densité du gaz par rapport à l’air Plafond La hauteur maximale à laquelle pourra montée le ballon s’écrit : Utilisation