Principe de résolution des structures But : retrouver la densité électronique du cristal Formellement : Avec, pour un cristal périodique : Fhkl sont les coefficients du développement en série de Fourier de la densité électronique rtot(r)
||Qhkl|| < Qmax. < 4p/l Problème des phases On ne mesure que l’intensité |Fhkl|2 d’une réflexion de Bragg Les phases ne peuvent pas être obtenues expérimentalement mais par calcul. Résolution Les intensités mesurées sont telles que : ||Qhkl|| < Qmax. < 4p/l rtot(r) est convoluée par une fonction de largeur 1.15p/Qmax : Les distances minimums d sont 2p/Qmax ( mini = l/2 ) kd q ki 4p/l Sphère de résolution
a’ : vitesse de rotation du cristal Intensité intégrée a’ : vitesse de rotation du cristal Facteur de Lorentz Facteur de polarisation Sphère d’Ewald da dW q S(q) d3q qdacosq d3q 2p/l ds q=Qhkl q q Rayons x
Mesure des intensités 6-cercle 4-cercle 6-cercle Kuma
Diffraction sur des cristaux parfait Théorie dynamique-1 Diffraction sur des cristaux parfait Théorie dynamique (M. Von Laue, P. Ewald, G. Darwin) Dépend de la géométrie de diffraction Même conditions de diffraction (Laue, Bragg) à la réfraction près… q q Pouvoir réflecteur (géométrie de Bragg) Th. Cinématique Th. dynamique
Théorie dynamique-2 q q Pdyn. < Pcin. q q Extinction secondaire : Grain B moins illuminé que A Réflectivité Pdyn. < Pcin. q q A Cristal mosaïque Idéalement imparfait (Petits cristaux,Poudres) B q « Rocking curves » Extinction primaire : Interférences négatives entre faisceaux diffusés n fois Réflectivité Courbe de Darwin 100 % L L : longueur d’extinction q
Extinctions systématiques-1 Dues aux opérations de symétrie non-symorphique Réflexions avec glissement Exemple miroir a, translation c/2 Facteur de structure contient : c c/2 (-x, y, z+1/2) a b (x, y, z) (0kl) l = 2n Condition d’existence : Dans le cas général q dans le plan du miroir glissement t q.t = 2n c* c* b* b* Plan réciproque h=0 Plan réciproque h=1
Extinctions systématiques-2 Translations hélicoïdales Exemple axe 21, direction c Facteur de structure contient : (xj, yj, zj) (-xj, -yj, zj+1/2) (-x, -y, z+1/2) c/2 c b (x, y, z) a (00l) l = 2n Condition d’existence : Dans le cas général q // axe ( pas t ) q.t = 2n c* b* Plan réciproque h=0
Principe des expériences pompe-sonde Fréquences e- 13.6 eV 3.2 as Ultra-rapide Int e-e 1 fs -> 0,3 µm 1.8 fs obtenues au LCLS en 2010 Vibrations molécules Réactions chimiques 10-12 s Int e-ph Phonons acoustiques Femtochimie Ahmed H. Zewail Nobel chimie (1999) Rapide Transitions induites 10-9 s Mesures stroboscopiques Étude d’états métastables (réactions chimiques, désexcitations e-, transitions de phases) Temps de vie très court (ms à la fs) Une pompe excite le système, une sonde l’étudie après un retard variable. 10-6 s Tsonde ~ Tpompe << Tretard << Trép. Dynamique lente 10-3 s E État excité Pompe Sonde 1 s État fondamental retard t Taux de répétition
Transition de phases photo-induite : ~ 500 ps Neutre (P21/n) Ionique/ferroélectrique (Pn) TTF Exciton D+ CA A- 21 D+ A- n n n n Ordre ferroélectrique à longue distance photo-induit en ~ 500 ps (Laser 800 nm) ESRF ID9: E.Collet et al., Science 300, 612 (2003) Etude des mécanismes des transitions de phase en temps et non en température…
Résolution des structures 1-Détermination du groupe d’espace (si possible) Réseau Conditions d’extinction 2-Détermination des phases des Fhkl Fonction de Patterson Méthodes directes 3-Affinement de la structure Moindre carré Minimisation du facteur d’accord
Exemple : nucléosome ESRF : l = 0.842 Å, résolution 2.8 Å Groupe d’espace P212121 : a=108 Å, b= 186 Å, c=111 Å Cristal oscillant 0.4°, 90 s 570 clichés, 4.228 118 ADN tourne de 1.65 tour Autour de 4 paires de protéines K.Luger et al., Nature, 389, 251 (1998)
Densité électronique de déformation Mesures précises des intensités densité électronique Liaison chimique Potentiel électrostatique, transfert de charge, moment dipolaire Calcul de Fhkl dans l’approximation sphérique Densité électronique de déformation
Exemples de cartes H2O dans LiOH.H2O Acide oxalique 15 K H O O C C O O Contour 0.005 eÅ-3 Exemples de cartes Acide oxalique 15 K H2O dans LiOH.H2O D’après Vainshtein H Doublets libres O O C C O O H Contour 0.05 eÅ-3 (Zobel et al. 1992)
Développement multipolaire de la densité électronique (Modèle de Hansen-Coppens) Hexabromobenzène C6Br6 Static deformation map d- d+ d- d+ D’après S. Dahaoui et al., Angew. Chem. Int. Ed., 2009, 48, 3838 stat(r)= multipole(r)- spherical(r) La distribution anisotrope de la densité électronique autour de l’halogène est à l’origine de l’interaction halogène-halogène
Diffusion anomale Principe de Curie Loin des seuils d’absorption wK w f ’’ Loi de Friedel : I(q)= I(-q) f ’ Structure centrosymétrique Structure non-centrosymétrique F(q)=F + if ’’cosq.r F(-q)= F + if ’’cosq.r F(q)=FeiF + (f 0+f ’+if ’’) e-iq.r F(-q)=Fe-iF + (f 0+ f ’+if ’’) eiq.r Im Im if ’’ F(q) -q.r f 0+ f ’ F if ’’ Re -F Re F(q) F(-q) q.r Mesure de la chiralité absolue Méthode MAD (Multiwave-length Anomalous Difraction) Principe de Curie
Projection sur <010> Interprétations Direction q : Projection orth. de rtot(r) A(q) est la TF de la projection de rtot(r) orth. à q Axe 21 Projection sur <010> Coupe selon b b/2 2b* b* a* b a Espace réel Réseau réciproque
Fonction de Patterson Calcul de P(r) On trouve : Fonction de corrélation densité-densité On trouve : Les intensités |Fhkl|2 sont les coefficients du développement en série de Fourier de la fonction de Patterson
Méthode de l’atome lourd Exemple Cristal Patterson Si la maille contient un atome « lourd » Méthode de l’atome lourd
Méthodes directes Utilisation de relations entre facteurs de structures Relations exactes : Ex : structure centrosymétrique les phases sont 0 ou p Centre : +axe binaire : Relations statistiques : Ex : la relation est d’autant plus probable que le terme est élevé (Karle-Hauptman)
Mg : Frank-Kasper polyèdres Structures complexes Détermination de structure Ab initio Mg1-xIr1+x , 304 atomes (25 dans l’unité asym.) a=18.469 Å ; b= 18.174 Å ,c= 18.821 Å R. Černý, et al. Acta Cryst. B60, 272 (2004) Ligne Suisse-Norvégienne, ESRF, l=0.5 Å, 3963 raies (754 indépendantes) Un jour d’expérience. Haute résolution Flux important Icosaèdres (CN 12) Mg : Frank-Kasper polyèdres (CN 14, 15 or 16)