THEORIE DE LA DETECTION DU SIGNAL

Slides:



Advertisements
Présentations similaires
Table des matières En famille Part 1 Ma famille Subject pronouns
Advertisements

Primary French Presentation 2 Saying How You Are.
Cliquez pour modifier le style du titre du masque Cliquez pour modifier les styles du texte du masque –Deuxième niveau Troisième niveau –Quatrième niveau.
Cliquez et modifiez le titre Cliquez pour modifier les styles du texte du masque Deuxième niveau Troisième niveau Quatrième niveau Cinquième niveau 1 Cliquez.
Negation… I go… I do not go. = Je vais… Je ne vais pas.
How to solve biological problems with math Mars 2012.
Mardi 20 Novembre 2012 Recap I can
CH APITRE III: LA PSYCHOPHYSIQUE.
Techniques de leau et calcul des réseaux séance 2a Michel Verbanck 2012.
Les Expressions Négatives
Donnez l’heure “Time”… it’s a ticking!.
Différencier: NOMBRE PREMIER vs. NOMBRE COMPOSÉ
Ce document est la propriété d ’EADS CCR ; il ne peut être communiqué à des tiers et/ou reproduit sans l’autorisation préalable écrite d ’EADS CCR et son.
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
Vers un nouvel empirisme: l’ancien et le nouvel empirisme John Goldsmith Université de Chicago CNRS MoDyCo.
La bimodalité des galaxies « Les galaxies dans leur contexte cosmologique » David Elbaz Service d'Astrophysique - CEA Saclay Tel:
L’inversion --another way to make a question.. What are some ways to form a question? Est-ce que... N’est-ce pas? Voice inflection.
Bonjour!! Pour être prêt: Répondez aux questions:
© Copyright Showeet.com S OCIAL M EDIA T HINKING.
Notes for teachers: Olympics 2012 Project – parts of body Instructions for using these slides & attaching soundfiles if desired are in the notes pages.
Laboratoire des outils informatiques pour la conception et la production en mécanique (LICP) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 1 Petri nets for.
Modèles et observations Confidence in the validity of a finding is based on the type, amount, quality, and consistency of evidence (e.g., data, mechanistic.
Research interests Viviane Gascon Vietnam Nurse scheduling Viviane Gascon and Éric Gagné.
Les pronoms objets indirects.  Peux-tu identifier les règles des ‘pronoms objets indirects’ en regardant les exemples suivants?
THE ADJECTIVES: BEAU, NOUVEAU AND VIEUX 1.
Les Mots Interrogatifs
Le superlatif Comparing people and things within a group.
Le Passé Composé - avec “avoir” Look at the following 3 sentences. Ali played football yesterday They have visited Paris 3 times We did tidy the bedroom.
Effets sur la santé des champs électromagnétiques basse fréquence
Depuis Describing how long one has been doing something.
L’Heure To ask what time it is in French, say: – Quelle heure est-il? To respond, say: – Il est... heure(s). – Ex: 02h00 Il est deux heures. 04h00 Il est.
Les Questions d’Information (Information questions)
Structures de données et algorithmes – TP7 Maria-Iuliana Dascalu, PhD
Techniques de l’eau et calcul des réseaux le calcul hydrologique proprement dit Michel Verbanck 2012.
Les verbes réfléchis.
GREDOR - GREDOR - Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables How to plan grid investments smartly? Moulin de Beez, Namur.
Modèles d’interaction et scénarios
Université d’Ottawa - Bio Biostatistiques appliquées © Antoine Morin et Scott Findlay :05 Asymétrie fluctuante.
FINANCE Distribution des rentabilités Professeurr André Farber Solvay Business School Université Libre de Bruxelles.
FINANCE Le risque systématique Professor André Farber Solvay Business School Université Libre de Bruxelles Fall 2006.
QCA Unit 4 Portraits Instructions for using these slides & attaching soundfiles if desired are in the notes pages beneath each slide (view in normal mode)
The Passé Composé Tense Look at the following 3 sentences. Ali played football yesterday They have visited Paris 3 times We did not tidy the bedroom.
1. Est-ce que Est-ce que, literally translated "is it that," can be placed at the beginning of any affirmative sentence to turn it into a question: Je.
University of Ottawa - Bio 4118 – Applied Biostatistics © Antoine Morin and Scott Findlay 24/07/2015 2:29 PM Bootstrap et permutations.
The Passé Composé Regular verbs with avoir Look at the following 3 sentences. Ali played football yesterday They have visited Paris 3 times We did tidy.
Unité 6 Leçon B. Forming yes/no questions  To form a yes/no question in French in the simplest way, add a question mark at the end of the sentence, and.
The Passé Composé Objective: to talk about things we have done on a visit to explain what events happened to speak and write about events in the past.
French 1 Chapter 2 Grammar 2
Clique Percolation Method (CPM)
It’s.  Both C’est and Il est/Elle est can mean it’s.  There are specific times to use each.
OBJECT PRONOUNS WITH THE PASSÉ COMPOSÉ Page 122. Placement  With all object pronouns, placement is the same. DirectIndirectPlaces De+ nouns or ideas.
Les Adjectifs. What is an adjective? An adjective is a word that modifies a noun by describing it in some way: Shape Color Size Nationality.
LES PRONOMS D’OBJET DIRECT. WHAT IS A SUBJECT? In a sentence, the person or thing that performs the action of the verb is called the SUBJECT.
1 Linear Prediction. 2 Linear Prediction (Introduction) : The object of linear prediction is to estimate the output sequence from a linear combination.
FD relative displacement measurements A.Jeremie ATF2 GM System team: K.Artoos, C.Charrondière, A.Jeremie, J.Pfingstner, D.Schulte, R.Tomas-Garcia B.Bolzon.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
l y a which we have already learned means “there is/are l y a which we have already learned means “there is/are.” When we put a measure of time.
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics.
© 2004 Prentice-Hall, Inc.Chap 4-1 Basic Business Statistics (9 th Edition) Chapter 4 Basic Probability.
P&ID SYMBOLS. P&IDs Piping and Instrumentation Diagrams or simply P&IDs are the “schematics” used in the field of instrumentation and control (Automation)
Lect12EEE 2021 Differential Equation Solutions of Transient Circuits Dr. Holbert March 3, 2008.
Definition Division of labour (or specialisation) takes place when a worker specialises in producing a good or a part of a good.
Roots of a Polynomial: Root of a polynomial is the value of the independent variable at which the polynomial intersects the horizontal axis (the function.
Bienvenue Au monde des Pronoms.
© by Vista Higher Learning, Inc. All rights reserved.4A.1-1 Point de départ In Leçon 1A, you saw a form of the verb aller (to go) in the expression ça.
The ICA Formula and Double Slope S-N curves 26/04/2019
1 Sensitivity Analysis Introduction to Sensitivity Analysis Introduction to Sensitivity Analysis Graphical Sensitivity Analysis Graphical Sensitivity Analysis.
Transcription de la présentation:

THEORIE DE LA DETECTION DU SIGNAL La Théorie de la Détection du Signal (TDS) est à la fois un instrument de mesure de la performance et un cadre théorique dans lequel cette performance est interprétée du point de vue des mécanismes sous-jacents. En tant que telle, la TDS peut être regardée comme étant à la base de la psychophysique moderne. Le cours développera les bases de la TDS, discutera sa relation avec les concepts de seuil sensoriel et de décision et exemplifiera son application dans des situations expérimentales allant depuis le sensoriel jusqu'au cognitif.

SIGNAL DETECTION THEORY AND PSYCHOPHYSICS David M. Green & John A. Swets 1st published in 1966 by Wiley & Sons, Inc., New York Reprint with corrections in 1974 Copyright © 1966 by Wiley & Sons, Inc. Revision Copyright © 1988 by D.M. Green & J. A. Swets 1988 reprint edition published by Peninsula Publishing, Los Altos, CA 94023, USA

LE MODEL STANDARD : THEORIE de la DETECTION du SIGNAL p(N) p(S) p(‘yes’│N) = p(RN>c) STIMULUS RÉPONSE Bruit Signal Oui FA Hit Non CR Omiss. CR Miss p(‘yes’│S) = p(RS>c) PROBABABILITÉ s1 Hits c FA CONTINUUM SENSORIEL R -

Score z Ou « score normal » ou « score standard » -4.0 -3.0 -2.0 -1.0 +1.0 +2.0 +3.0 +4.0 Z scores

LE MODEL STANDARD : THEORIE de la DETECTION du SIGNAL CONTINUUM SENSORIEL fR: PROBABABILITÉ FA Hits The likelihood ratio Le rapport de vraisemblance c R

LE MODEL STANDARD : THEORIE de la DETECTION du SIGNAL b = 1 p(S) = . 50 c = 0 -4 -3 -2 -1 1 2 3 4 5 6 Sensory Continuum (z) 0,1 0,2 0,3 0,4 0,5 P(z) N S d’=1 p(S) = .25 c pN(z=c) pS(z=c) c = 1.10 c cA = c + d’/2 = 1.60 = cA -zFA

TDS – « diagramme d’état » p(H) = p2 + u(1 - p2) p(FA) = p1 + u(1 – p1) DOMAINE DU STIMULUS ETAT INTERNE REPONSE B S RB = « non » RS = « oui » Distracteur (Bruit) Cible (Signal) p2 1 - p2 1 - p1 u 1 - u 1 « vrais » H p1: «vrais» FA

High Threshold Seuil Haut Détection du Signal Signal Detection q 1-q Hit u 1-u p(Hit) p(FA) 1-p(FA) 1-p(Hit) q =(H – F) / (1 – F) [correction for guessing] H = p(“Yes”│S) = q + u(1 – q) F = p(“Yes” │N) = u INTENSITÉ SEUIL p Intensité RÉPONSE PERFORMANCE

+z -z +z d’ d’ -z +z z(.5) = 0 z(p < .5) < 0 z(p > .5) > 0 z(FA) 1 - p > .5 1 - p > .5 p > .5 1 - p < .5 p < .5 p > .5 1 - p > .5 +z z(H) -z +z z(.5) = 0 z(p < .5) < 0 z(p > .5) > 0 z(1 - p) = -z(p) d’ d’ -z +z d’ = z(H) – [-z(FA)] d’ = z(H) – z(FA)

d’ computation with Excel d’ = LOI.NORMALE.STANDARD.INVERSE[p(H)] - LOI.NORMALE.STANDARD.INVERSE[p(FA)] c0 = -0.5*{LOI.NORMALE.STANDARD.INVERSE[p(H)] + LOI.NORMALE.STANDARD.INVERSE[p(FA)]} cA = -LOI.NORMALE.STANDARD.INVERSE[p(FA)] b = LOI.NORMALE(cA;d’;1;FAUX)/LOI.NORMALE(cA;0;1;FAUX)

Receiving Operating Characteristics (ROC) d’ d’ d’

ROC & le Rating experiment 1. Faire le choix entre Oui et Non; 375 Tot. 285 90 N 157 218 S Non Oui 2. Donner son niveau de certitude de 1 (peu sûr) à (par ex.) 3 (très sûr); l’on calcule les p pour chaque case en divisant sa fréq. par le no. total 1.00 Tot. N, FA S, H * .301 .059 “3” .200 “2” .160 “1” Non .251 .131 .120 .099 .021 Oui -4 -3 -2 -1 1 2 3 4 5 6 Sensory Continuum (z) 0.1 0.2 0.3 0.4 0.5 P(z) N S d’=.91 c .202-(-.706) = .908 d’ zH-zFA -.706 zFA -.5(.202 - .706) =.252 -.5(zH + zFA) 90/375 = .24 .202 218/375 = .58 pFA zH pH 2. Calculer le pH, pFA; puis d’ & c. *Notez que l’échelle « Oui/Non » ci-dessus est équivalente à une échelle «Oui» avec 6 graduations, du plus sûr («6») au moins sûr («1»): Tot. “1” “2” “3” “4” “5” “6” Oui 3. Pr chaque case, l’on calcule les p cumulés de gauche à droite, les scores z, les d’ et c FA H 1.00 “1” .701 .942 “2” .400 .742 “3” .582 .382 .131 .240 .120 .021 “4” “5” “6” Oui -1.050 -0.198 0.250 0.738 1.579 c 1.046 0.902 0.913 0.874 0.916 d’ zFA zH 0.527 1.573 -0.253 0.649 0.207 -0.301 -1.121 -0.706 -1.175 -2.037

ROC & le Rating experiment Note that a symmetrical ROC indicates that d’ is independent of c0 0.2 0.4 0.6 0.8 1 pFA pH -4 -3 -2 -1 1 2 3 4 5 6 Sensory Continuum (z) 0.1 0.2 0.3 0.4 0,5 P(z) N S d’=.91

ROC & le Rating experiment 0.2 0.4 0.6 0.8 1 pFA pH

d’ with unequal variances CONTINUUM SENSORIEL PROBABABILITÉ FA Hits c s1 s2

d’ with unequal variances 0.2 0.4 0.6 0.8 1 pH d’ -2 -1 1 2 zH in sN units in sS units d’ with unequal variances 0.2 0.4 0.6 0.8 1 pFA pH d’ ? d’2 < d’a < d’1 -2 -1 1 2 zFA zH in sN units in sS units d’a

d’ with unequal variances -2 -1 1 2 zFA zH in sN units in sS units d’a The index da has the properties we want. It is intermediate in size between d1 and d‘2. It is equivalent to d' when the ROC slope is 1, for then the perpendicular line of length DY/N coincides with the minor diagonal, and the two lines of length da coincide with the d'1, and d'2 segments. It turns out to be equivalent to the difference between the means in units of the root-mean-square (rms) standard deviation, a kind of average equal to the square root of the mean of the squares of the standard deviations of S1 and S2. d’ with unequal variances To find da from an ROC that is linear in z coordinates, it is easiest to first estimate d’1, d’2 and the slope s = d’1/d’2. Because the standard deviation of the S1 distribution is s times as large as that of S2, we can set the standard deviation of S1 to s and that of S2 to 1. To find da directly from one point on the ROC once s is known:

d’ with unequal variances 0.2 0.4 0.6 0.8 1 pFA pH d’ d’ with unequal variances Sometimes a measure of performance expressed as a proportion is preferred to one expressed as a distance. The index Az, is such a proportion and is simply DYN transformed by the cumulative normal distribution function , i.e. (DYN): Az is the area under the normal-model ROC curve, which increases from .5 at zero sensitivity to 1.0 for perfect performance. It is basically equal to %Correct in a 2AFC experiment. It is a truly nonparametric index of sensitivity.

q =(H – F) / (1 – F) H = (1 – q)F + q q = 0.6 q = 0.3 q = 0 Hit q 1-q u 1-u 0.2 0.4 0.6 0.8 1 0.0 pFA pH 1.0 q = 0.6 q = 0.3 q = 0 p(Hit) p(FA) 1-p(FA) 1-p(Hit) 0.2 0.4 0.6 0.8 1 0.0 pFA pH 1.0

High-Threshold Sum Absolute Difference (SAD) Max Absolute Difference (MAD) Hits & FA HT SAD MAD H FA Schematic of a single trial used for the set size and the target number experiments. In the orientation and spatial frequency experiments, the colored squares were replaced with Gabor patches. ROCs obtenus avec une méthode de « rating » sur une échelle de 1 à 4. Different symbols represent performance at different set sizes: set-size 2 for color, orientation and SF – red stars; set-size 4 for color and SF, set-size 3 for orientation – green triangles; set-size 6 for color and SF, set-size 4 for orientation – blue circles; set-size 8 for color and SF, set-size 5 for orientation – purple squares. Wilken, P. & Ma, W.J (2004). A detection theory account of change detection. J. Vision 4, 1120-1135.

LA RELATION ENTRE Y/N & 2AFC S 1 2 A = « 1 » - « 2 »  -S B = « 1 » - « 2 »  S See MacMillan & Creelman (2005, 2nd ed.) pp 166-170.

LA RELATION ENTRE Y/N & 2AFC d’ d’2 Réponse Correct Incorrect Droite Gauche Stimulus %Correct  Hits %Incorrect  FA d’ 2AFC d’2AFC = 2d’Oui/Non D G Yes/No See MacMillan & Creelman (2005, 2nd ed.) pp 166-170.

Reasons for “invisibility” So, objects may be “invisible” for only 2 + 1 reasons; because the internal activity they yield upon presentation: is undistinguishable from noise (null sensitivity)  d' = 0, 0,1 0,2 0,3 0,4 0,5 -4 -3 -2 -1 1 2 3 4 5 6 P(z) d' = 3 c = 1.5 is below Sj’s criterion  the objet is ignored, or 0,1 0,2 0,3 0,4 0,5 -4 -3 -2 -1 1 2 3 4 5 6 P(z) because Sj’s report on the presence/absence of the stimulus is solicited within a time delay beyond his/her mnemonic capacity (the case of change blindness). 

SENSITIVITY  Failure of discriminating Signal from Noise has a triple edge: Stimuli may be out of the standard window of visibility [] (Signal  Internal noise) e.g. ultraviolet light, SF > 40 c/deg, TF > 50 Hz reduced window of visibility (experimental or pathological – e.g. blindsight) Stimuli may be "masked" by external noise [] so that the S/N ratio is decreased by means of: increasing N (external noise impinges on the detecting mechanism  the classical pedestal effect, or increases spatial/temporal uncertainty  e.g. the "mud-splash effect") decreasing S (external noise activates an inhibitory mechanism  lateral masking/metacontrast) [] Change of the transducer [](experimentally or neurologically induced gain-control effects, normalization failure …) 

CRITERION The response criterion can be assimilated to response bias (and everything that goes with it, i.e. predisposition, context effects, etc.) 50% 50% can be manipulated in a number of ways: probability pay-off can be affected by experience in general and, possibly, by some neurological conditions blindsight neglect / extinction attentional deficit syndromes What my message today is going to be is that criterion, as a concept and as a tool, has been largely ignored despite the fact that it may be helpful, to say the least, if not enlightening, when used to address questions on bizarre neurological conditions basic sensory processes (e.g. Weber’s Law) attention and, it goes with it, consciousness

AN EXAMPLE: CHANGE BLINDNESS Dinner Money What my message today is going to be is that criterion, as a concept and as a tool, has been largely ignored despite the fact that it may be helpful, to say the least, if not enlightening, when used to address questions on bizarre neurological conditions basic sensory processes (e.g. Weber’s Law) attention and, it goes with it, consciousness Airplane

THÉORIE DE LA DÉTECTION DU SIGNAL CANAUX, BRUIT et THÉORIE DE LA DÉTECTION DU SIGNAL

Le principe de l’UNIVARIANCE « Qualité » (l) Intensité Intensité ou « qualité » du Stimulus Réponse (s/s ou autre)

Le principe de l’UNIVARIANCE Un autre Réponse d’un filtre (s/s ou autre) Intensité Intensité ou « qualité » du Stimulus « Qualité » (l) Un « canal » ou « filtre » ou « champ récepteur » I = stimulus intensity R = response Rmax = max resp. N = max slope S = semi-saturation cst. Rs = spontaneous R

Le principe de l’UNIVARIANCE Un autre R V Réponse d’un filtre Réponse d’un filtre (s/s ou autre) Intensité ou « qualité » du Stimulus « Qualité » (l) Un Canal, Filtre. Chp Récep. I = stimulus intensity R = response Rmax = max resp. N = max slope S = semi-saturation cst. Rs = spontaneous R

RESPONSE NORMALIZATION Normalization works (here) by dividing each output by the sum of all outputs. Divisive inhibition Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181-197.

CANAUX & PROBABILITÉ DE RÉPONSE Intensity Discrimination V RÉPONSE p(s/s) REPONSE (e.g. s/s) pmin pMax pmin pMax p(s/s)

Within & Across Channels Discrimination CANAUX & PROBABILITÉ DE RÉPONSE Within & Across Channels Discrimination R V RÉPONSE p(s/s) REPONSE (e.g. s/s) pmin pMax pmin pMax p(s/s)

CANAUX & PROBABILITÉ DE RÉPONSE « OFF-LOOKING » CHANNEL V p(s/s) REPONSE (e.g. s/s) p(s/s) REPONSE (e.g. s/s) R V

TRANSDUCTION s = cst. NO Weber ’s Law DI = k k p(R) DII0 DII1 I0 I1 DR Input R = kI log (I) log (DI) slope = 1 NO Weber ’s Law DI = k k DII1 DR DII0 DR I0 I1

TRANSDUCTION s = cst. Weber ’s Law DI = kI p(R) DII1 DII0 I0 I1 DR log (I) log (DI) slope = 1 Weber ’s Law DI = kI DII1 DR DII0 DR I0 I1

TRANSDUCTION Weber ’s Law DI = kI p(R) DII1 DII0 I0 I1 DR slope > 1 log (I) log (DI) slope > 1 Weber ’s Law DI = kI DII0 DR I0 I1

SIGNAL DETECTION THEORY VISUAL SEARCH and SIGNAL DETECTION THEORY

Treisman A.M. & Gelade G. (1980) Le paradigme type Temps. Réaction No. Éléments ORIENTATION Parallèle (?!) Temps. Réaction No. Éléments Sériel (?!) ORI + COL

LE MODÉLE STANDARD : LA THÉORIE DE LA DÉTECTION DU SIGNAL « COULEUR » L R V RESPONSE l CONTINUUM SENSORIEL (R-V) PROBAB. s d’ n’est pas mesurable « COULEUR » L R V RESPONSE l CONTINUUM SENSORIEL (R-V) PROBAB. s DR d’=

CANAUX & PROBABILITÉ DE RÉPONSE LE PLUS RÉPONDANT GAGNE V RÉPONSE p(s/s) REPONSE (e.g. s/s) pmin pMax R V p[R(Y/G) largest] pmin x pmax

ORIENTATION COULEUR Temps. Réaction Parallèle (?!) No. Éléments Sériel (?!) Procs. Coopératifs Temps. Réaction No. Éléments COULEUR Parallèle (?!) Temps. Réaction No. Éléments Sériel (?!) Procs. Coopératifs

Window of visibility Hz l cpd Hz l cpd LIMITED WINDOW OF VISIBILITY Distributed FOURIER Transform LIMITED WINDOW OF VISIBILITY Hz cpd l NON-CIRCUMSCRIBED FOURIER SPECTRUM

Noise NOISE

Noise

Masking “CHANNELS” 1 2 1 2 INHIBITORY “MASKING” MASKING “PROPER” NOISE

Transducers? STIMULUS INTENSITY INTERNAL RESPONSE or d’ 1 i j

A CAT? Identification UN ANIMAL ?