Séries de Fourier Tout signal périodique (T) de puissance finie peut être décomposé en une somme de sinus et de cosinus. An=0 1(4/) 1+ 3 (4/3) 1+ 3+5.

Slides:



Advertisements
Présentations similaires
[number 1-100].
Advertisements

Le moteur
Qualité du Premier Billot. 2 3 Défauts reliés à labattage.
1. Résumé 2 Présentation du créateur 3 Présentation du projet 4.
Mon carnet De comportement
Analyse temps-fréquence
notes de cours Série de Fourier
Classe : …………… Nom : …………………………………… Date : ………………..
PRINCIPE SIMPLIFIE DE LA COMPRESSION MP3
1 Jean-Paul Stromboni, mars 2005, Révision des cinq premières séances S.S.I. Jean-Paul Stromboni, mars 2005, ESSI1 Elève : ______________________ groupe.
Calcul de la composition fréquentielle du signal audio
1 Jean-Paul Stromboni, mars 2005, Révision des cinq premières séances S.S.I. Jean-Paul Stromboni, mars 2005, ESSI1 Elève : ______________________ groupe.
Les numéros
Est Ouest Sud 11 1 Nord 1 Individuel 20 joueurs 15 rondes - 30 étuis (arc-en-ciel) Laval Du Breuil Adstock, Québec I-20-15ACBLScore S0515 RondeNE
Est Ouest Sud 11 1 Nord 1 Laval Du Breuil, Adstock, Québec I-17-17ACBLScore S0417 Allez à 1 Est Allez à 4 Sud Allez à 3 Est Allez à 2 Ouest RndNE
Est Ouest Sud 11 1 Nord 1 RondeNE SO
Est Ouest Sud 11 1 Nord 1 Individuel 15 ou 16 joueurs 15 rondes - 30 étuis Laval Du Breuil Adstock, Québec I-16-15ACBLScore S0415 RndNE
Sud Ouest Est Nord Individuel 36 joueurs
Les Prepositions.
1 Introduction 1 - Equations de Maxwell dans le vide 2 - Equations de propagation du champ électromagnétique dans le vide 2 - Equations de propagation.
La transformée de Fourier en pratique
Prospection par ondes de surface
Série de Fourier s(t) = Une série de Fourier est une série du type :

Dpt. Télécommunications, Services & Usages Théorie de l information H. Benoit-Cattin Introduction 2. Vue densemble 3. Sources discrètes & Entropie.
Traitement du Signal Hugues BENOIT-CATTIN.
La diapo suivante pour faire des algorithmes (colorier les ampoules …à varier pour éviter le « copiage ») et dénombrer (Entoure dans la bande numérique.
Intervenants: Hugues BENOIT-CATTIN Chantal MULLER
Spectre.
Mr: Lamloum Med LES NOMBRES PREMIERS ET COMPOSÉS Mr: Lamloum Med.
1. Introduction 1.1. Modélisation des signaux
Les verbes auxiliaires Avoir ou être ?? Choisissez! Cest un verbe Dr Mrs Vandertrampp? Cest un verbe réfléchi?
1 SERVICE PUBLIC DE LEMPLOI REGION ILE DE France Tableau de bord Juillet- Août 2007.
LUNDI – MARDI – MERCREDI – JEUDI – VENDREDI – SAMEDI – DIMANCHE
La Saint-Valentin Par Matt Maxwell.
Louis la grenouille Paroles et musique: Matt Maxwell.
ELG La transformée de Fourier, énergie, puissance et densités spectrales.
2. La série de Fourier trigonométrique et la transformée de Fourier
Notre calendrier français MARS 2014
Modulation analogique
3ème partie: les filtres
Traitement Numérique du Signal
Transformées de Fourier des signaux continus
C'est pour bientôt.....
Veuillez trouver ci-joint
SUJET D’ENTRAINEMENT n°4
Développement en série de FOURIER
LUNDI – MARDI – MERCREDI – JEUDI – VENDREDI – SAMEDI – DIMANCHE
ECOLE DES HAUTES ETUDES COMMERCIALES MARKETING FONDAMENTAL
Théorie de l'Échantillonnage
Traitement de différentes préoccupations Le 28 octobre et 4 novembre 2010.
ECOLE DES HAUTES ETUDES COMMERCIALES MARKETING FONDAMENTAL
* Source : Étude sur la consommation de la Commission européenne, indicateur de GfK Anticipations.
10 paires -. 9 séries de 3 étuis ( n° 1 à 27 ) 9 positions à jouer 5 tables Réalisé par M..Chardon.
CALENDRIER-PLAYBOY 2020.
9 paires séries de 3 étuis ( n° 1 à 27 )
1 Nestlé – Optifibre Zones administrables via le back-office.
DU TRAITEMENT DU SIGNAL
Les Chiffres Prêts?
Médiathèque de Chauffailles du 3 au 28 mars 2009.
DU TRAITEMENT DU SIGNAL
Description harmonique des signaux périodiques
DU TRAITEMENT DU SIGNAL
Echantillonnage sinusoïde 3.16 [mV], 64 [MHz] 1 Zoom : Échantillonnée à fe = 192 [MHz], N = 255 échantillons.
Rappels sur la transformée de Fourier
Séries de Fourier Tout signal périodique (T) de puissance finie peut être décomposé en une somme de sinus et de cosinus. An=0 1(4/) 1+ 3 (4/3)
Transcription de la présentation:

Séries de Fourier Tout signal périodique (T) de puissance finie peut être décomposé en une somme de sinus et de cosinus. An=0 1(4/) 1+ 3 (4/3) 1+ 3+5 (4/5) Continu / Fondamental / harmoniques 1+ 3+ 5 + 7 (4/7)

Quelques exemples de signaux périodiques Sinusoide Rectangle périodique Triangle périodique Dent de scie

Séries de Fourier complexe De {An,Bn} à Xn en utilisant la notation complexe A

Pour un cosinus ? Pour un sinus ? Le spectre du signal Pour ça ? T=5t Regraduons l ’axe des n en fréquence ...

Transformée de Fourier des signaux continus périodiques Signal périodique  Spectre discret

Et la puissance d ’un signal périodique ? Identité de Parseval Densité Spectrale de Puissance

Du périodique au non-périodique

Transformée de Fourier des signaux continus Regraduons en f

Représentation de la TF |X(w)| Module / Argument Parties réelle & imaginaire Arg(X(w))

! Quelques propriétés de Transformée de Fourier Linéarité X(f)  module |X(f)|, phase Arg[X(f)] x(t) réel  Re[X(f)] paire, Im[X(f)] impaire, module pair, phase impaire x(t) réel pair  X(f) réel pair x(t) réel impair  X(f) imaginaire impair x(t)*y(t)  X(f).Y(f) et x(t).y(t)  X(f)*Y(f) ! x(t)*d(t-t0)= x(t-t0)  X(f) exp(-2jp f t0) x(t) exp(2 j p t f0)  X(f-f0) x*(t)  X*(-f) x(at)  |a|-1 X(f/a) dnx(t)/dtn  (2 j p f )n X(f)

d(t)  1 Quelques signaux et leur Transformée de Fourier 1(t)  ½ d(f) + 1/(2 j p f ) cos(2pf0t)  [d(f-f0) +d(f+f0)]/2 sin(2pf0t)  [d(f-f0) -d(f+f0)]/2j Sd(t+nT)  Fe Sd(f+kFe) avec Fe=1/T Rect(t)  2a.Sinc(pfa)

représentation des signaux en temps 1 2 3 4 5 6 7 8 9 10 -1 -0.5 0.5 temps (sec) amplitude représentation des signaux en temps 1 2 3 4 5 6 7 8 9 10 0.2 0.4 0.6 0.8 fréquence (Hz) amplitude représentation des signaux en fréquence

représentation des signaux en temps 1 2 3 4 5 6 7 8 9 10 -1 -0.5 0.5 temps (sec) amplitude représentation des signaux en temps 1 2 3 4 5 6 7 8 9 10 0.2 0.4 0.6 0.8 fréquence (Hz) amplitude représentation des signaux en fréquence

représentation des signaux en temps 1 2 3 4 5 6 7 8 9 10 -1 -0.5 0.5 temps (sec) amplitude représentation des signaux en temps 0.2 0.4 0.6 0.8 1 fréquence (Hz) amplitude représentation des signaux en fréquence 5 10 15 20 25 30

représentation des signaux en temps 1 amplitude 0.5 -5 -4 -3 -2 -1 1 2 3 4 5 temps (msec) représentation des signaux en fréquence 1 0.8 amplitude 0.6 0.4 0.2 1 2 3 4 5 6 7 8 9 10 fréquence (MHz)

représentation des signaux en temps 2 amplitude 1 -5 -4 -3 -2 -1 1 2 3 4 5 temps (msec) représentation des signaux en fréquence 10 Énergie (dB) -10 -20 -30 1 2 3 4 5 6 7 8 9 10 fréquence (MHz)

DFT 50 100 -0.2 0.2 0.4 t (ms) [e] 1 2 3 4 5 10 20 30 40 PSD [e] f (kHz) (dB)

Et l ’énergie d ’un signal ? Identité de Parseval Densité Spectrale d ’Energie

Transformée de Fourier & Systèmes Un SLTI va être caractérisé par sa réponse impulsionnelle h(t) La transformée de Fourier de h(t) donne la réponse en fréquence du système H(f) x(t) h(t) y(t)=x(t)*h(t) TF TF TF X(f) H(f) Y(f)=X(f) . H(f) L ’inverse est aussi vrai

Bande passante et largeur de bande Caractérise un système Module de la rép. en fréquence Définie à -3dB (1/2) (Pm/2) Largeur de bande Caractérise un signal Densité Spectrale Espace des fréquences utiles !

Tranformée de Fourier des signaux échantillonnés Fréquence d ’échantillonnage Fe=1/Te La transformée de Fourier est discrète et donne un spectre périodique Le spectre est représenté de 0 à Fe ou de -Fe/2 à Fe/2 Rque : pour des signaux discrets, on pose Te=1=Fe, (et n=t) Transformée de |X(f)| x (t) e Fourier NTe t 1 f Te

Tranformée de Fourier des signaux échantillonnés périodiques Fréquence d ’échantillonnage Fe=1/Te, Période du signal NTe, Fréquence du signal F=1/NTe La transformée de Fourier est discrète et donne un spectre périodique et discret Le spectre est constitué de N raies, il est représenté de 0 à Fe ou de -Fe/2 à Fe/2 Rque : pour des signaux discrets, on pose Te=1, (et n=t) f 1 NTe 2NTe X e (f) Transformée de Fourier Te xe (t)

Du continu au discret, on échantillonne Échantillonnage idéal... ...Transformée de Fourier...  ... périodisation en fréquence. Échantillonnage temporel <=> Périodisation en fréquence Échantillonnage en fréquence <=> Périodisation temporelle

Tourne ... 1 T x(t) t f X(f) Transformée de Fourier (CCFT) t f X(f) Transformée de Fourier (CCFT) Echantillonnage en fréquence 2 2T X e (f) x (t) Transformée de Fourier (CDFT) Périodisation

et retourne ... x (t) NT t f X(f) Transformée de Fourier (DCFT) NT t f X(f) Transformée de Fourier (DCFT) Echantillonnage en fréquence 1 N T 2NT X (f) Te Transformée de Fourier (DDFT) Périodisation

Et le numérique ? L ’avant ? L ’après ? Te ? Un signal numérique est fini (N points), pour faire sa TF, on le périodise implicitement On rajoute éventuellement des 0 (Nz), pour avoir une TF sur (N+Nz) points.

Les différentes TF

Propriétés

CCFT connues

CCFT généralisées connues

DCFT connues

CDFT connues

DDFT connues