Activités, problèmes, situations…

Slides:



Advertisements
Présentations similaires
CONSTRUCTION DE TRIANGLES
Advertisements

TYPES DE PROBLÈMES EN GÉOMÉTRIE
Épreuve pratique de mathématiques du baccalauréat S
TRIANGLE RECTANGLE et CERCLE
CHAPITRE 8 Quadrilatères- Aires
Introduction à la notion de fonction 1. Organisation et gestion de données, fonctions 1.1. Notion de fonction Déterminer l'image d'un nombre par une fonction.
Programme de construction
Trois géométries différentes
Nouveaux programmes de mathématiques
Programmes du cycle central Ils sinscrivent dans la continuité des apprentissages de 6e et dans la perspective de mieux équilibrer les notions étudiées.
MATHEMATIQUES : EVOLUTION PROGRAMMES
Présentation des programmes de terminale STG Juin 2006.
Généralités sur la préparation et la conduite d’une séance
Généralités sur la préparation et la conduite d’une séance
Programme de seconde 2009 Géométrie
MATHEMATIQUES COMPETENCE 3 :
Le raisonnement déductif
Figures planes et solides
- Formes et grandeurs au cycle I -
Équations et Résolution d’équations en classe de 4ème. Le B. O
Continuité des apprentissages Ecole-Collège mars 2008 J Borréani IA-IPR mathématiques.
Technologie Collège Document d’accompagnement du programme de
Un exemple d'activité avec Géoplan
Question : pourquoi les fonctions ?
Les nouveaux programmes de seconde
Continuité des apprentissages Ecole-CollègePavilly Novembre 2007.
Rectangle Rectangle Définition Construction Propriété 1 Règle
RECIT d’EXPERIENCES Année Année IREM de Clermont-Ferrand - Lycée Montdory de Thiers.
LES TICE AU COLLEGE.
Nouveaux programmes de mathématiques
Sujet de mathématiques du concours blanc n° 2 donné à lIUFM dAlsace le 26 janvier 2010 avec proposition de corrigé Ce diaporama est disponible en ligne.
GÉOMÉTRIE au COLLÈGE.
Chapitre 2 Triangles.
CHAPITRE 4 Cercles, triangles et quadrilatères
Analyses des situations didactiques
Analyses des situations didactiques
Atelier Fonctions.
Parallélogrammes Remarque 1) Parallélogrammes
3G / 4G L’attitude et la participation en classe L’étude à domicile La méthode de travail La tenue des notes de cours Le journal de classe L’évaluation.
Résolution de problèmes au cycle 3
Les mathématiques lécole élémentaire Grandes lignes des programmes Présentation Viviane BOUYSSE, juin 2008.
THÉORÈME DE PYTHAGORE.
Activités mathématiques et supports d’enseignement
Quelques propriétés des figures géométriques
Chapitre 2 FIGURES planes ÉQUIVALENTES
PYTHAGORE ! VOUS AVEZ DIT THEOREME DE PYTHAGORE
Apprentissages et résolution de problèmes. « La r é solution de probl è mes constitue le crit è re principal de la ma î trise des connaissances dans tous.
Dans le cadre de la liaison cycle 3-6ème Dinan le 19 janvier 2005
LA DÉMONSTRATION AU COLLÈGE
Quelques exemples d ’utilisation des coordonnées au collège
Que peut on dire des droites (IJ) et (AC) ? Pourquoi ?
Produit scalaire dans le plan
Poitier (juin 1999) problème du brevet
JMG - 28/01/08 Des apprentissages implicites aux apprentissages explicites Caractère implicite ou explicite des apprentissages Les élèves ont certaines.
Constructions Propriétés Fiche démontrer.
L’élève chercheur en maternelle
LES QUADRILATERES.
9. Des figures usuelles.
Enseigner la géométrie au cycle 2
TICE et enseignement des maths au collège
Les verbes du programme
Constructions géométriques élémentaires
Retour sur la conférence de Rémi Brissiaud
Mathématiques au cycle 3
Le rectangle.
1. CALCUL DE LA MESURE D’UN ANGLE
(Grenoble 98) Le plan est rapporté à un repère orthonormé (O, I, J). L’unité est le centimètre. On considère les points : A(4 ; 4) B(7 ; 5) C(8 ; 2) 1.
M. YAMANAKA – Cours de mathématiques. Classe de 4ème.
TEST QUIZ Géométrie Niveau Collège 5KNA Productions 2014.
GEOMETRIE du cycle 1 au cycle 3 quelques pistes
Transcription de la présentation:

Activités, problèmes, situations… Extraits de programmes, Théorie de l’apprentissage, Polya, Brousseau, Douady, Gras… Exemples.

Extraits de programmes (B.O. et accompagnement) : procédures personnelles... avant procédures expertes. Mesure de l'impact d’une formation en mathématiques Pas au nombre de théorèmes et de propriétés qu’on retient, Mais à la manière d’aborder certaines situations capacités de formalisation et de conceptualisation, d’action et d’interprétation rationnelle de faits sociaux, etc.

Extraits de programmes (B.O. et accompagnement) : Sensibilité propre de l'enseignant : exposé rigoureux et sans faille plaisir dans la recherche de problèmes ® choix du métier d’enseignant, il importe que les deux soient présents dans son exercice.

Les théories de l'apprentissage. Modèle des petites marches (behavioriste.) Modèle de la tête vide. Modèle constructiviste.

Comment poser et résoudre un problème ? György Pólya Dunod, Paris, 1968.

Trois principes pour enseigner. L’apprentissage actif. La meilleure motivation. Le professeur doit accorder toute son attention au choix, à la formulation, à la présentation… Laisser les étudiants découvrir seuls le plus de choses Les phases consécutives. Assimilation Exploratoire Solution formelle

Théorie des situations. Guy Brousseau .

Les phases consécutives de l'apprentissage. Démonstration. Recherche . Conjecture . Expérimentation Institutionnalisation. Application Réinvestissement.

Quelques effets de contrat ou l’effacement de la volonté d’enseigner. L’effet Jourdain ou le malentendu fondamental. L’effet Topaze ou le contrôle de l’incertitude. Le glissement métacognitif.

Jeux de cadres et dialectique outil-objet. Régine Douady. R.D.M., vol. 7, n°2, 1986

Un concept mathématique joue alternativement le rôle d'Objet prenant place dans la construction d'un savoir organisé d' Outil pour résoudre un problème Dialectique outil-objet

des changements de cadres pour L'enseignant provoque des changements de cadres pour faire évoluer les conceptions de l'élève faire avancer les phases de recherche Jeux de cadres

On peut construire des connaissances mathématiques, grâce à des problèmes dont : L'énoncé est court, Compte-tenu de leurs connaissances, les élèves peuvent envisager une procédure de construction, mais ils ne peuvent pas résoudre complètement le problème, Les connaissances visées par l'apprentissage, sont des outils adaptés au problème, Le problème peut se formuler dans au moins deux cadres différents

Pour un enseignement problématisé des Mathématiques au Lycée. Groupe « Problématique Lycée ». APMEP., brochure 150 et 154, 2003

Compréhension réversible de la notion de repère cartésien. Le retournement de situation est un basculement de sens : du savoir rencontré incidemment (milieu objectif), on passe aux objets mathématiques comme principe de cohérence et de nécessité, et comme outils de structuration.(I. Bloch) C D Variantes et prolongements : Recherche du nombre minimal de points à donner. Coordonnées d'un point, par exemple {I} = (AD) (BC) Repère orthogonal, repère affine... « Jeu de groupes » : construction de la figure dans un repère, reproduction sur calque, échange entre deux groupes. A partir d'une droite sur une feuille A4, retrouver le repère dans lequel cette droite a pour équation 3x + y – 4 = 0 Le quadrilatère ABCD a été dessiné dans un repère orthonormé qui a disparu. Le retrouver à partir de la donnée des coordonnées dans ce repère, des points suivants : A(-4;2) B(2;-6) C(3;6) D(1;2) A

1. On connaît les milieux des 3 côtés d'un triangle. Retrouver ses sommets. 2. Construire un triangle ABC dont les médianes issues de B et de C sont perpendiculaires. Trouver, dans de tels triangles, l'expression de AB² + AC² en fonction de BC². 3. On connaît les milieux des côtés d'un pentagone Retrouver les 5 sommets. (Brochure Académique de la classe de seconde)

1. L'entier le plus proche d'un nombre a est 7 1. L'entier le plus proche d'un nombre a est 7. Trouver des valeurs possibles de a. 2. Trouver plusieurs nombres dont la valeur tronquée à 0,001 près est 5,176. Soit b un tel nombre. Quelles sont les valeurs possibles de b ? 3. Trouver plusieurs nombres dont la valeur arrondie à 0,001 près est 5,176. Soit c un tel nombre. Quelles sont les valeurs possibles de c ?

On donne deux baguettes de longueurs respectives a et b. Révision des figures quadrangulaires par un examen de leurs propriétés. On donne deux baguettes de longueurs respectives a et b. Construire sur le papier des quadrilatères dont ces deux baguettes sont des réalisations matérielles des diagonales. Les classer dans un tableau suivant leurs propriétés. La validation. Le contrôle physique peut être mené de concert avec le dessin ce qui permet de valider ou invalider des propositions. Le tableau permet d'expliciter une classification après exhaustion. On prolonge ensuite au cas où a = b.

Application de propriétés de géométrie de l'espace. Le changement de cadre. L'extension des propriétés du triangle rectangle à l'espace permettent de résoudre complètement ce problème. Un tétraèdre régulier de côté a cm doit être posé sur une face entre deux étagères espacées de ¾ a cm. Est- ce possible ? Variante. (Affaire de logique n°181, Le Monde du 25/07/00) Par une après-midi pluvieux d'été, quatre enfants remplacent leurs constructions de sable par des réalisations en pâte à modeler. Chacun a utilisé intégralement un bâton de pâte à modeler (les bâtons sont identiques) pour réaliser le premier une boule, le deuxième un téraèdre régulier, le troisième une pyramide à base carrée (dont les faces triangulaires sont équilatérales), le quatrième un cube. Classez ces solides par ordre croissant de hauteur.

Prise en compte des ordres de grandeur. Le débat scientifique. Les réponses peuvent d'abord être regroupées en deux parties : beaucoup plus et beaucoup moins, puis en précisant des ordres de grandeur de ces « beaucoup »... La question conduit aussi à donner des ordres de grandeur pour la surface de la Méditerranée, pour sa profondeur moyenne, à retrouver la masse molaire de l'eau et le nombre d'Avogadro. Combien y-a-t-il de molécules d'eau dans une goutte d'eau ? Y-en-a-t-il beaucoup plus, beaucoup moins que de gouttes d'eau dans la Méditerranée ? (M. Artigue, Repères janvier 2004)

Un nombre limité de fois Comment ? Quoi ? Quand ? Le travail de groupes… Les notions nodales. Un nombre limité de fois dans l’année. Jamais en DS.