MATHEMATIQUES Nouveaux Programmes S- ES

Slides:



Advertisements
Présentations similaires
INTRODUCTION GENERALE POUR LE COLLEGE b.o. hors série n°6 Du 19 avril 2007.
Advertisements

Algorithmes et structures de données avancés
Journée de l’inspection –2011
Présentation des programmes de terminale STG Juin 2006.
Généralités sur la préparation et la conduite d’une séance
Nouveau programme de Première S
Généralités sur la préparation et la conduite d’une séance
PROGRAMME : BTS CG.
La spécialité mathématique en TS
Méthodes et pratiques Scientifiques (MPS)
INFORMATIONS SUR LES NOUVEAUX PROGRAMMES DE 1res ST2D et STL
ORGANISATION DES CONTENUS
Continuité des apprentissages Ecole-Collège mars 2008 J Borréani IA-IPR mathématiques.
Les nouveaux programmes de mathématiques de la voie professionnelle.
Document ressource. Le programme de mathématiques et le socle Le présent document dapplication a pour ambition de montrer, à la fois par des indications.
SECTION DE TECHNICIEN SUPERIEUR
CYCLE TERMINAL DE LA SÉRIE LITTÉRAIRE Programmes de mathématiques.
Le nouveau lycée denseignement général et technologique La rénovation de la voie technologique les nouvelles séries Mars – Avril 2011 STI2D (sciences et.
Les mathématiques en cycle terminal
Inspection pédagogique régionale de mathématiques. Académie de Montpellier. Mai 2011.
Inspection pédagogique régionale de mathématiques. Académie de Montpellier. DEC 2012 Nouveaux Programmes de mathématiques Série STMG Sciences et Technologies.
Le programme de seconde générale et technologique
Programmes de première denseignement spécifique de mathématiques en classe de première de la série économique et sociale et denseignement obligatoire au.
MATHEMATIQUES Nouveaux Programmes S- ES
1 Démarche dinvestigation Epreuve Pratique en S. 2 Culture scientifique acquise au collège A lissue de ses études au collège, lélève doit sêtre construit.
Programme de Mathématiques Sciences physiques et chimiques Baccalauréat professionnel 3 ans Novembre 2009.
Continuité des apprentissages Ecole-CollègePavilly Novembre 2007.
Inter-académiques Montpellier 2011 Atelier spécialité Proposé par lacadémie de Grenoble.
A.Faÿ 1 Recherche opérationnelle Résumé de cours.
Évaluation par compétences en mathématiques
Programmes du cycle terminal
Devoirs maison et TICE.
Le nouveau lycée denseignement général et technologique La nouvelle classe de première à la rentrée 2011 au lycée denseignement général et technologique.
5 DÉCEMBRE 2012 CONSTRUIRE UN COURS. Au cours de mathématiques, on travaille !
TPE Les élèves mènent à bien une production originale, concrète et choisie par eux Ils développent des compétences individuelles à travers un travail de.
Présentation des nouveaux programmes de la série STMG Jeudi 20 décembre Lycée René Descartes Cournon dAuvergne.
La spécialité mathématiques en Terminale S
SÉRIE ES ET SÉRIE S NOUVEAUX PROGRAMMES AU CYCLE TERMINAL.
Suites de matrices Quelques usages récurrents
Approche par les problèmes en TS spécialité maths
Nouveau programme de spécialité en TS
Objectif général Les compétences à développer : mettre en œuvre une recherche de façon autonome ; mener des raisonnements ; avoir une attitude critique.
ALGORITHMIQUE en classe de seconde
1 Le programme de 3 e Rentrée 2008 (daprès un diaporama dAndré Pressiat)
Mathématiques Le nouveau programme de STI2d/STL
Nouveaux programmes de mathématiques Terminales L, ES, S, STI2D, STL et cycle terminal STMG Octobre 2012.
SCIENCES DE L ’INGENIEUR
Programmes de premières S, ES/L
La spécialité mathématiques en Terminale S
Programme de Seconde 21/10/2009 Rentrée 2009 – 2010.
Enseignement d’exploration MPS.
Des épreuves pratiques aux TP Des exemples en probabilités
Résolution de problèmes Analyse : « Le programme sinscrit, comme celui de la classe de seconde, dans le cadre de la résolution de problèmes. Les situations.
Mise en œuvre des nouveaux programmes Vice-Rectorat de Mayotte.
Jean-François Chesné DEPP-B4 Marseille 8 octobre 2010 Projet pour lAcquisition de Compétences par les Elèves en Mathématiques P. A. C. E. M.
Nouveaux programmes de mathématiques à la rentrée 2012 Mars Avril 2012.
Nouveaux programmes de première S et ES-L
Les nouveaux programmes de première S, ES et L Présentation académique.
PLAN DE LA PRESENTATION
Inspection Pédagogique Régionale. Novembre 2009 Le programme de seconde.
STATISTIQUES – PROBABILITÉS
Septembre Semaines du 2 au 13 septembre DATECOURSEXERCICESEXERCICES à fairePOUR le Jeudi 4 Prise de contact Rappels sur les suites 2 exemples donnés pour.
Les épreuves du baccalauréat STG
Informatique et Sciences du Numérique
LES NOUVEAUX PROGRAMMES DE MATHÉMATIQUES
L’ALGORITHMIQUE DANS LE PROGRAMME DE SECONDE Nouvelle Calédonie 2010.
PROFESSEURS STAGIAIRES Et NEO-CONTRACTUELS Formation disciplinaire 2 octobre 2015 Elizabeth BASTE-CATAYEE.
 Formation de base pour s’insérer dans la société.  Formation de futurs utilisateurs de mathématiques. » Communiquer avec d’autres disciplines. » Comprendre.
Nouveautés et points de vigilance Programmes de Mathématiques Cycles 2 et 3 Points de convergence aux quatre thèmes d’étude. 1.Nombres entiers et calculs.
Production de ressources pour le cycle 3 Lycée Diderot le 8 mars 2016
Transcription de la présentation:

MATHEMATIQUES Nouveaux Programmes S- ES Pendant l’affichage de cette diapo, nous précisons le déroulement de la journée. Inspection pédagogique régionale de mathématiques. Académie de Montpellier. Nov 2012

Quelques généralités S ES 6 h / 28 4 h / 27 2 h 1 h 30 Horaires (pas de dédoublement prévu au niveau national) = Spe L S ES 6 h / 28 (5h30) 4 h / 27 (4h) SPE : 2 h 1 h 30 (2h) AP : Un rapide rappel sur les données institutionnelles (horaires/horaires totaux (ex-horaires) d’un élève hors options Math; S. phys S.v.t. I.s.n Math App Eco apprf

Quelques généralités Pour le bac 2013 S ES & spé L Coefficient : 7 ou 9 Épreuve écrite avec exercice pour spé ou non spé noté sur 5 De 3 à 5 exercices notés de 3 à 10 ISN : (type TPE) coef 2 ES coef 5 ou 7 L coef 4 Epreuve écrite… 3 ou 4 exercices notés de 3 à 10

Présentation des programmes Une introduction commune : objectif général raisonnement et langage mathématiques utilisation d’outils logiciels On notera combien chaque rubrique est explicité en termes de pratiques pédagogiques et on souligne parallélisme presque parfait et la continuité avec les intitulés de 1ère

Objectifs généraux Donner à tous : - une culture mathématique large ; - une base pour un projet d’études. Tenir compte des évolutions sociétales (Culture statistique et numérique) Développer des compétences (mettre en œuvre une recherche de façon autonome ; mener des raisonnements ; avoir une attitude critique / des résultats obtenus ; communiquer à l’écrit et à l’oral) Lors de la définition de nouveaux programmes, il s’agit de prendre en compte diverses commandes ou demandes. - La DEGESCO, maitre d’ouvrage, programmes permettant des parcours évolutifs et changement de filières; des évolutions sociétales exprimées par des partenaires (autres IG notamment). L’objectif invariant de l’IG math : culture et préparation aux cursus math Rien de précis actuellement sur nouveaux programmes de classe prépa qui sont en chantiers

Objectifs généraux Comment les atteindre : Acquérir des connaissances fondamentales et pratiquer le calcul sous des formes variées ; Favoriser la démarche d’investigation ; Renforcer l’interdisciplinarité ; Valoriser l’utilisation d’outils logiciels ; Développer la pratique des démarches algorithmiques.

Objectifs généraux Mise en oeuvre Diversité de l’activité de l’élève en classe Les activités en classe prennent appui sur la résolution de problèmes (purement mathématiques ou issus d’autres disciplines). - expérimenter, modéliser, utiliser des outils - choisir et appliquer des techniques fondamentales de calcul - mettre en œuvre des algorithmes, - raisonner, démontrer, trouver des résultats partiels - communiquer un résultat . Ces pratiques pédagogiques se traduisent dans le temps scolaire : 1) J’insisterai sur la portée formatrice et culturelle du concept de simulation ! 2) Histoire des math ce qui ne signifie pas de prêter à une démarche strictement historique toutes les vertus

Objectifs généraux Mise en oeuvre Le travail hors du temps scolaire : (les « d.m. ») « Fréquents, de longueur raisonnable et de nature variée, les travaux hors du temps scolaire contribuent à la formation des élèves et sont absolument essentiels à leur progression. Ils sont conçus de façon à prendre en compte la diversité et l’hétérogénéité de leurs aptitudes » [I.G. math] DM : on peut anticiper l’Ordi et surtout penser à la dimension « communiquer » dans le DM Mentionner la problématique de l’évaluation : variée, adaptée, en prise avec l’utilisation d’outils

Présentation du programme ES Trois entrées Deux entrées Analyse Prob -Stat Prob –Stat Géométrie signalétique : algorithmique : ◊ Démonstrations type : ▣ Interdisciplinaire : ⇄ Aide Personnalisée : AP Dans le programme de ES il y a seulement des indications dans les capacités attendues (parfois) Deux paragraphes ( prolongeant ceux de 1ière ) algorithmique, Notations; raisonnement mathématiques.

Présentation du programme Contenu Capacités Attendues Commentaires Entrée Sous entrée … ( l’ordre des entrées et sous entrées n’est pas significatif) « Les capacités attendues indiquent un niveau minimal de maîtrise en fin de cycle terminal. La formation ne s’y limite pas » Signalétiques éventuelles en S : ◊; ▣; ⇄ ; AP Suggestions pédagogiques EN S : ½ : analyse ½ : géom; proba;stat EN ES : 2/3 : analyse 1/3 : proba stat REPARTITION TEMPS Je remarque qu’une grande latitude est laissée, notamment il n’y a pas ou peu « d’interdits ». Les capacités attendues indiquent un niveau minimal, de maîtrise.

Présentation du programme Exemple rapidement commenté montrant le coté non restrictif du programme

EN S : Phases d’institutionnalisation possibles à posteriori Raisonnement et langage mathématiques Exigence du cycle terminal : argumentation /démonstration / logique Les concepts et méthodes relevant de la logique mathématique ne font pas l’objet de cours spécifiques. Le vocabulaire et les notations mathématiques ne sont pas fixés d’emblée, mais sont introduits au fur et à mesure. EN S : Phases d’institutionnalisation possibles à posteriori …pour les inconditionnels de la formalisation de réciproque, contraposée, disjonction… il n’est pas néfaste d’envisager une mise à plat APRES des utilisations répétées de ces modes de raisonnement

Utilisation d’outils logiciels Divers types : - outils de visualisation, de simulation ; - de calcul formel ou scientifique ; - de programmation. Trois modalités : - par le professeur en classe (visualisation collective) ; - par les élèves (travaux pratiques de mathématiques) ; - travail personnel des élèves (hors de la classe). Calcul formel pour alléger certaines phases trop techniques (qui peuvent être détaillées plus tard)

Domaines en S – Analyse - (1ière S : fonction et dérivation , suites ) Limites de suites, de fonctions, fonction logarithme, exponentielles, intégration Contenus Suppression de la technique de l’i.p.p. Intégration : penser aire, calcul approché Suppression des équations différentielles. Exigences restreintes sur les limites Capacités supplémentaires attendues Des démonstrations exigibles Des attendus en algorithmiques Ipp non exclue mais elle n’est pas théorisée. Limite : sur les suites : maitrisées (mais gendarmes admis). Sur les fonctions : valoriser l’interprétation graphique. Dérivée d’une somme , produit, quotient, des fonctions de référence . Pas de technicité : utiliser sinon le calcul formel, appuyer sur l’interprétation graphique Pas d’asymptotes hors // aux axes Pas de formules à priori sur la dérivée de la composée --- Algo donnant une liste de termes, un cumul, un calcul de seuil (« qud un > A donné etc…)

Domaines en S – Geométrie - (1ière S : Calcul vectoriel, trigo et p. scalaire) Nombres complexes, géométrie dans l’espace, produit scalaire dans l’espace et équations cartésiennes de plans Contenus Suppression des transformations Suppression des barycentres Suppression des lieux géométriques Réduction du § des nombres complexes Vecteurs coplanaires

Domaines en S – Proba-Statistique- (1ière S : Variance, v.a.r. discrètes, loi binomiale, intervalle de fluctuation et prise de décision dans le cadre binomial) Conditionnement et indépendance ; lois à densité (uniforme, exp., normales) ; fluctuation, int. de confiance Contenus La loi normale Th. de Moivre-Laplace Intervalle de fluctuation asymptotique Intervalle de confiance au seuil de 95%. Fluctuation asymptotique et retour sur la formule de 2ième Préciser les attendus de 2ième et de 1ière !!!

Domaines en ES-L - Analyse - (1ière ES-L : fonction et dérivation , suites ) Limites de suites. Fonctions exponentielles, logarithme, intégration  

Domaines en ES/L – Proba-Stat- (1ière S : Variance, v.a.r. discrètes, loi binomiale, intervalle de fluctuation et prise de décision dans le cadre binomial) Contenus Conditionnement Loi uniforme. La loi normale (sans justification) Intervalle de fluctuation asymptotique au seuil de 95% Intervalle de confiance au seuil de 95%. Utilisation pragmatique des proba totales

Stat /proba : S & ES/L S ES/L Probabilités conditionnelles (+ indépendance en S). Notion de lois à densité. Intervalle de fluctuation. Intervalle de confiance. S ES/L Loi uniforme Loi exponentielle Loi normale centrée réduite N (0,1) Loi normale N (μ ,σ 2 ) Th. De Moivre-Laplace En résumé ….

Algorithmique : S & ES/L Dans le cadre de la résolution de problèmes Savoir Préciser les entrées/sorties Programmer des affectations Programmer une itération avec compteur Programmer une itération avec test d’arrêt Programmer une instruction conditionnelle Etre capable de Ecrire un algorithme en langage naturel (ou symbolique) Réaliser ou modifier un algorithme Interpréter un algorithme donné

Programme de la spécialité Maths en S. Une entrée qui prend appui sur la résolution de problèmes. Deux thèmes : l’arithmétique (qui reprend les notions du programme précédent) ; les matrices et les suites dans le but d’étudier des processus discrets, déterministes ou stochastiques.

Programme de la spécialité Maths en S : Matrices et suites. Des exemples de problèmes : Marche aléatoire simple sur un graphe à deux ou trois sommets. Marche aléatoire sur un tétraèdre ou sur un graphe. Etude du principe du calcul de la pertinence d’une page web. Modèle de diffusion d’Ehrenfest. Modèle proie prédateur discrétisé : évolution couplée de deux suites récurrentes ; étude du problème linéarisé au voisinage du point d’équilibre.

Programme de la spé.Maths en S : Le contenu à donner : Matrices carrées, matrices colonnes, matrices lignes : opérations. Matrice inverse d’une matrice carrée. Exemples de calcul de la puissance n-ième d’une matrice carrée d’ordre 2 ou 3. Écriture matricielle d’un système linéaire. Suite de matrices colonnes (Un ) vérifiant une relation de récurrence du type Un+1 = AUn + C Étude asymptotique d’une marche aléatoire.

Programme de la spé. Maths en ES Une entrée qui prend appui sur la résolution de problèmes. Un thème : matrices et graphes Suppression de l’espace et des suites, mais les élèves n’ont pas fait de spé en première et n’ont donc pas du tout vu les matrices

Programme de la spé.Maths en ES Des exemples de problèmes : Recherche de courbes polynomiales passant par un ensemble donné de points. Gestion de flux, problèmes simples de partitionnement de graphes sous contraintes : problème du voyageur de commerce, gestion de trafic routier ou aérien, planning de tournois sportifs, etc. Modélisation d’échanges inter-industriels (matrices de Léontief). Codage par un graphe étiqueté, applications à l'accès à un réseau informatique, reconnaissance de codes. Minimisation d’une grandeur (coût, longueur, durée, etc.). Phénomènes évolutifs (variation d’une population, propagation d'une rumeur ou d'un virus, etc.).

Programme de la spécialité Maths en ES Le contenu à donner : Matrice carrée, matrice colonne, ligne : opérations. Matrice inverse d'une matrice carrée. Graphes : sommets, sommets adjacents, arêtes, degré d’un sommet, ordre d’un graphe, chaîne, longueur d’une chaîne, graphe complet, graphe connexe, chaîne eulérienne, matrice d’adjacence associée à un graphe. Recherche du plus court chemin sur un graphe pondéré connexe. Graphe probabiliste à deux ou trois sommets : matrice de transition, état stable d'un graphe probabiliste.

Documents ressources Statistiques et probabilités Matrices en S Disponibles sur le site académique : http://webpeda.ac-montpellier.fr/mathematiques/spip.php?rubrique116