1 Efficient Data and Program Integration Using Binding Patterns Ioana Manolescu, Luc Bouganim, Francoise Fabret, Eric Simon INRIA.

Slides:



Advertisements
Présentations similaires
LES NOMBRES PREMIERS ET COMPOSÉS
Advertisements

[number 1-100].
Le moteur
Qualité du Premier Billot. 2 3 Défauts reliés à labattage.
1. Résumé 2 Présentation du créateur 3 Présentation du projet 4.
Le vaccin antigrippal disponible en France :
Classe : …………… Nom : …………………………………… Date : ………………..
Les numéros
ACTIVITES Les fractions (10).
Est Ouest Sud 11 1 Nord 1 Laval Du Breuil, Adstock, Québec I-17-17ACBLScore S0417 Allez à 1 Est Allez à 4 Sud Allez à 3 Est Allez à 2 Ouest RndNE
Est Ouest Sud 11 1 Nord 1 RondeNE SO
Sud Ouest Est Nord Individuel 36 joueurs
Les identités remarquables
Les Prepositions.
Les 3 dimensio ns de la morale et de léthique (activité)
Le Modèle Logique de Données
Algèbre relationnelle
Optimisation algébrique de requêtes relationnelles
La diapo suivante pour faire des algorithmes (colorier les ampoules …à varier pour éviter le « copiage ») et dénombrer (Entoure dans la bande numérique.
R. Saint-Paul, G. Raschia and N. Mouaddib IRIN, Nantes (France)
Description du fonctionnement d'un système 1 Clic Clic
2 1. Vos droits en tant quusagers 3 1. Vos droits en tant quusagers (suite) 4.
Mr: Lamloum Med LES NOMBRES PREMIERS ET COMPOSÉS Mr: Lamloum Med.
Méthodes d‘optimisation en finance
PROMOTION 2012 Les résultats. Baccalauréat général et technologique Filière STG CFE STG COM RH STG MERC LES 1ES 2S1S2S3TOTAL Nb de candidats
Interagir avec un objet mixte Propriétés physiques et numériques Céline Coutrix, Laurence Nigay Équipe Ingénierie de lInteraction Homme-Machine (IIHM)
CALENDRIER PLAYBOY 2020 Cliquez pour avancer.
Application des algorithmes génétiques
1 SERVICE PUBLIC DE LEMPLOI REGION ILE DE France Tableau de bord Juillet- Août 2007.
Titre : Implémentation des éléments finis sous Matlab
F Copyright © Oracle Corporation, Tous droits réservés. Créer des programmes avec Procedure Builder.
LES NOMBRES PREMIERS ET COMPOSÉS
Réseaux de neurones.
La Saint-Valentin Par Matt Maxwell.
1 INETOP
RACINES CARREES Définition Développer avec la distributivité Produit 1
Représentation des systèmes dynamiques dans l’espace d’état
Représentation des systèmes dynamiques dans l’espace d’état
Représentation des systèmes dynamiques dans l’espace d’état
DUMP GAUCHE INTERFERENCES AVEC BOITIERS IFS D.G. – Le – 1/56.
1.1 LES VECTEURS GÉOMÉTRIQUES
Tournoi de Flyball Bouin-Plumoison 2008 Tournoi de Flyball
Notre calendrier français MARS 2014
Titre : Implémentation des éléments finis en Matlab
C'est pour bientôt.....
Veuillez trouver ci-joint
Terrain Espérance Terrains Cézeaux T4T4 T1T1 T5T5 Matchs ext DU 06/08 au 12/ Mer 08Lun 06Mar 07Jeu 09Ven 10 10H 13H 15H 17H 18H 22H Sam 11Dim 12.
SUJET D’ENTRAINEMENT n°4
ECOLE DES HAUTES ETUDES COMMERCIALES MARKETING FONDAMENTAL
LUNDI – MARDI – MERCREDI – JEUDI – VENDREDI – SAMEDI – DIMANCHE
ECOLE DES HAUTES ETUDES COMMERCIALES MARKETING FONDAMENTAL
Traitement de différentes préoccupations Le 28 octobre et 4 novembre 2010.
ECOLE DES HAUTES ETUDES COMMERCIALES MARKETING FONDAMENTAL
1/65 微距摄影 美丽的微距摄影 Encore une belle leçon de Macrophotographies venant du Soleil Levant Louis.
* Source : Étude sur la consommation de la Commission européenne, indicateur de GfK Anticipations.
10 paires -. 9 séries de 3 étuis ( n° 1 à 27 ) 9 positions à jouer 5 tables Réalisé par M..Chardon.
Modélisation des données Niveau conceptuel DON-2 V0-0.
CALENDRIER-PLAYBOY 2020.
1. Présentation générale du système
9 paires séries de 3 étuis ( n° 1 à 27 )
Quel est l’intérêt d’utiliser le diagramme de Gantt dans la démarche de projet A partir d’un exemple concret, nous allons pouvoir exploiter plusieurs parties.
1 Nestlé – Optifibre Zones administrables via le back-office.
Les Chiffres Prêts?
Elles avaient envahi le jardin, mais derrière... 1.
Médiathèque de Chauffailles du 3 au 28 mars 2009.
Chapitre 3 :Algèbre de Boole
Les parties du corps By Haru Mehra Le Frehindi 1Haru Mehra, DELF, DALF,CFP.
Transcription de la présentation:

1 Efficient Data and Program Integration Using Binding Patterns Ioana Manolescu, Luc Bouganim, Francoise Fabret, Eric Simon INRIA

Ioana Manolescu, INRIA Futurs, projet Verso 2BDA 2002 Definition du probleme (1/2) Contexte: système d'integration de donnees –En presence d'attributs volumineux Blobs, e.g. images (cartes), donnees (points mesures) –En presence de programmes couteux "user-defined functions" (e.g. traitement ou analyse d'images ou de resultats numeriques) –Requetes posees par des utilisateurs

Ioana Manolescu, INRIA Futurs, projet Verso 3BDA 2002 Exemple: integration de donnees scientifiques Programme OzoneLevels {12, 24, 125, 240} Jours de trafic intense 02/01/02 03/01/02 28/02/02 Dans quels jours de trafic intense ont été enregistrés des niveaux bas dozone ? 10/11/01 15/2/01 02/01/02 Cartes dozone

Ioana Manolescu, INRIA Futurs, projet Verso 4BDA 2002 Definition du probleme (2/2) Contexte: système d'integration de donnees –En presence d'attributs volumineux –En presence de programmes couteux –Requetes posees par des utilisateurs Probleme: –Reduire le temps de reponse –Produire une grande partie des resultats au debut de l'execution

Ioana Manolescu, INRIA Futurs, projet Verso 5BDA 2002 Principe de notre solution Modelisation des ressources comme des relations aux restrictions d'acces –Modele pre-existant (Ullmann 1995) Un nouvel operateur physique, specifique aux relations aux restrictions d'acces –Permet de traiter efficacement des requetes comportant Des programmes couteux Des transferts de donnees volumineuses

Ioana Manolescu, INRIA Futurs, projet Verso 6BDA 2002 Programme OzoneLevels {12, 24, 125, 240} Jours de trafic intense 02/01/02 03/01/02 28/02/02 Dans quels jours de trafic intense ont été enregistrés des niveaux bas dozone ? Exemple : integration de donnees scientifiques 10/11/01 15/2/01 02/01/02 Cartes dozone

Ioana Manolescu, INRIA Futurs, projet Verso 7BDA 2002 Programme OzoneLevels {12, 24, 125, 240} Jours de trafic intense 02/01/02 03/01/02 28/02/02 Dans quels jours de trafic intense ont été enregistrés des niveaux bas dozone ? Image(date, ID, img) 15/02/ date ID img Exemple : integration de donnees scientifiques

Ioana Manolescu, INRIA Futurs, projet Verso 8BDA 2002 Jours de trafic intense 02/01/02 03/01/02 28/02/02 Dans quels jours de trafic intense ont été enregistrés des niveaux bas dozone ? Image(date, ID, img) 15/02/ date ID img 12 img val OzoneLevels(img, val) Exemple : integration de donnees scientifiques

Ioana Manolescu, INRIA Futurs, projet Verso 9BDA 2002 TraficIntense(date) Dans quels jours de trafic intense ont été enregistrés des niveaux bas dozone ? Image(date, ID, img) 15/02/ date ID img 12 img val OzoneLevels(img, val) date 03/01/02 28/02/02 select i.img, i.date, t.date, o.level from Image i, OzoneLevels o, TraficIntense t where i.date=t.date and i.img=o.img and v.val < 20 {img} {val} {date} Exemple : integration de donnees scientifiques {date} {ID} {date} {ID, img} {ID} {img, date}

Ioana Manolescu, INRIA Futurs, projet Verso 10BDA 2002 Traitement de requetes sur des relations aux restrictions d'acces Notation: –Img(date b ID f ), OzoneLevels(img b val f ) Operateurs logiques –L'ensemble standard (sel, proj, join…) –Un operateur specifique: le BindJoin Join assymetrique, passage d'information vers une relation a acces restreint Optimisation algebrique –Decrite ailleurs TraficIntense Image OzoneLevels date img

Ioana Manolescu, INRIA Futurs, projet Verso 11BDA 2002 Traitement de requetes sur des relations aux restrictions d'acces Operateurs logiques –L'ensemble standard (sel, proj, join…) + BindJoin Optimisation algebrique Nous allons voir: –Un operateur physique de BindJoin permettant de Reduire le temps de reponse Produire une grande partie des resultats au debut de son execution En presence de programmes couteux et/ou des transferts de donnees volumineuses

Ioana Manolescu, INRIA Futurs, projet Verso 12BDA 2002 Plan d'execution et problemes de performance possibles (1/2) Image(date b ID f ) Image(Id b img f ) OzoneLevels(img b level f ) Trafic(date f ) select i.img, i.date, t.date, o.level from S 1 :Image i, S 2 :OzoneLevels o, S 3 :Trafic t where i.date > t.date and t.date < i.date+3 and i.img=o.img and o.level < 20 S2S2 S3S3 S1S1 S4S4 Appels redondants de programmes Transferts redondants d'images Mauvais temps de reponse Trafic Image OzoneLevels σ S1S1 S3S3 S1S1 S2S2 S4S4 S2S2 S2S2 Image S1S1 S1S1

Ioana Manolescu, INRIA Futurs, projet Verso 13BDA 2002 Opérateur physique de BindJoin q(X,Z) F(X b Y f ) r X1X1 Z1Z1 X1X1 Z2Z2

Ioana Manolescu, INRIA Futurs, projet Verso 14BDA 2002 Opérateur physique de BindJoin q(X,Z) F(X b Y f ) r X1X1 Z1Z1 X1X1 Z2Z2

Ioana Manolescu, INRIA Futurs, projet Verso 15BDA 2002 Opérateur physique de BindJoin q(X,Z) F(X b Y f ) r X1X1 Z1Z1 X1X1 Z2Z2 X1X1 Z1Z1

Ioana Manolescu, INRIA Futurs, projet Verso 16BDA Opérateur physique de BindJoin q(X,Z) F(X b Y f ) r X1X1 Z1Z1 X1X1 Z2Z2 X1X1 Z1Z1

Ioana Manolescu, INRIA Futurs, projet Verso 17BDA Opérateur physique de BindJoin q(X,Z) F(X b Y f ) r X1X1 Z2Z2 X1X1 Z1Z1 25 X1X1 Z1Z1

Ioana Manolescu, INRIA Futurs, projet Verso 18BDA 2002 Opérateur physique de BindJoin : usage du cache q(X,Z) F(X b Y f ) r X1X1 Z2Z2 X1X1 Z1Z1 25 X1X1 Z1Z1 12 Cache X1X

Ioana Manolescu, INRIA Futurs, projet Verso 19BDA 2002 Opérateur physique de BindJoin : usage du cache q(X,Z) F(X b Y f ) r X1X1 Z1Z1 25 X1X1 Z1Z1 12 Cache X1X X1X1 Z2Z2 X1X1 Z2Z2 12

Ioana Manolescu, INRIA Futurs, projet Verso 20BDA 2002 Opérateur physique de BindJoin : usage du cache Ensemble: 1.La modelisation par des relations aux restrictions d'acces et 2.L'usage d'un cache dans le BindJoin permettent d'eviter des operations redondantes –Technique plus ciblee, plus legere que les semi- joins L'operateur physique de BindJoin s'adapte aux limitations memoire

Ioana Manolescu, INRIA Futurs, projet Verso 21BDA 2002 Plan d'execution et problemes de performance possibles (2/2) Image OzoneLevels OzoneLevels(img b level f ) Trafic(date f ) select i.img, i.date, t.date, o.level from S 1 :Image i, S 2 :OzoneLevels o, S 3 :Trafic t where i.date > t.date and t.date < i.date+3 and i.img=o.img and o.level < 20 S2S2 S3S3 S1S1 S4S4 Peu de tuples au debut temps tuples Taux de sortie des tuples du BindJoin: Image(date b ID f ) Image(Id b img f )

Ioana Manolescu, INRIA Futurs, projet Verso 22BDA 2002 Opérateur physique de BindJoin : cache et parallelisme q(X,Z) F(X b Y f ) r Cache X1X X2X2 Z3Z3 X1X1 Z4Z4

Ioana Manolescu, INRIA Futurs, projet Verso 23BDA 2002 q(X,Z) F(X b Y f ) r Cache X1X X2X2 Z3Z3 X1X1 Z4Z4 Buffer de tuples Opérateur physique de BindJoin : cache et parallelisme

Ioana Manolescu, INRIA Futurs, projet Verso 24BDA 2002 q(X,Z) F(X b Y f ) r Cache X1X X2X2 Z3Z3 X1X1 Z1Z1 X1X1 Z1Z1 12 X2X2 Opérateur physique de BindJoin : cache et parallelisme

Ioana Manolescu, INRIA Futurs, projet Verso 25BDA 2002 q(X,Z) F(X b Y f ) r Cache X1X X2X2 Z3Z3 X1X1 Z1Z1 X1X1 Z1Z1 12 X2X Opérateur physique de BindJoin : cache et parallelisme

Ioana Manolescu, INRIA Futurs, projet Verso 26BDA 2002 Opérateur physique de BindJoin : cache et parallelisme q(X,Z) F(X b Y f ) r Cache X1X X1X1 Z1Z X1X1 Z1Z1 X2X X2X2 Z3Z3 10 X2X2 Z3Z3 30 X2X2 Z3Z3 45

Ioana Manolescu, INRIA Futurs, projet Verso 27BDA 2002 Opérateur BindJoin : choix de la valeur à traiter q(X,Z) F(X b Y f ) r Cache X1X X2X X3X3 Z1Z1 X4X4 Z3Z3 X4X4 Z4Z4 X5X5 Z5Z5 X4X4

Ioana Manolescu, INRIA Futurs, projet Verso 28BDA 2002 Opérateur BindJoin : choix de la valeur à traiter q(X,Z) F(X b Y f ) r Cache X1X X2X X4X X3X3 Z1Z1 X4X4 Z3Z3 X4X4 Z4Z4 X5X5 Z5Z5

Ioana Manolescu, INRIA Futurs, projet Verso 29BDA 2002 Opérateur BindJoin : choix de la valeur à traiter q(X,Z) F(X b Y f ) r Cache X1X X2X X4X X3X3 Z1Z1 X4X4 Z3Z3 X4X4 Z3Z3 X5X5 Z5Z5 X4X4 Z4Z4 X4X4 Z4Z

Ioana Manolescu, INRIA Futurs, projet Verso 30BDA 2002 Evaluation des performances du BindJoin (ER) Données & requêtes synthétiques –R : 10,000 tuples (x,z) –paramètres variables: distributions de x, z (indép.) –f : coût 10, g : coût 1 –requête: select f(R.x), g(R.z) from R Plans: –dans les deux cas, les deux BindJoin implémentés CacheParallèle + choix de la valeur la plus populaire CacheParallèle + choix de la plus ancienne valeur CacheSéquentiel (pas de buffer de tuples) R f g R g f

Ioana Manolescu, INRIA Futurs, projet Verso 31BDA 2002 Taux de sortie des tuples (1/3) R.x, R.y distribution uniforme; Nx=5500; Ny=1000 R f g

Ioana Manolescu, INRIA Futurs, projet Verso 32BDA 2002 Taux de sortie des tuples (2/3) R.x, R.y distribution uniforme; Nx=5500; Ny=1000, g avant f R g f

Ioana Manolescu, INRIA Futurs, projet Verso 33BDA 2002 Taux de sortie des tuples (3/3) R.x, R.y zipf distributions, Nx=7000, Ny=1000, α=0.2, g avant f R g f

Ioana Manolescu, INRIA Futurs, projet Verso 34BDA 2002 Influence du taux dentrée R.x, R.y distributions Zipf, Nx=7000, Ny=1000, α=0.2 R g f

Ioana Manolescu, INRIA Futurs, projet Verso 35BDA 2002 Influence de lordre des données R.x, R.y distributions zipf, Nx=7000, Ny=1000, α=0.2 R g f

Ioana Manolescu, INRIA Futurs, projet Verso 36BDA 2002 Conclusion Opérateur BindJoin pour: –Appeller des programmes couteux –Transferer des donnees volumineuses (blobs) Usage du cache pour reduire RT, du parallelisme pour produire beaucoup de tuples vite Approche pragmatique pour remedier aux problemes de performance les plus importants S'integre bien dans le cadre traditionnel d'execution et d'optimisation de requetes