H&E 4X mouse overview, lid, lens, retina, optic nerve
Cornée HE
Cornée HE Cornea, rat - H&E and Cornea, monkey - van Gieson Identified the layers of the cornea. Keratocytes are easiest to identify in H&E stained sections. The posterior endothelium may not be well preserved. If that is the case in your section, scan along the posterior boundary of the cornea and see if there is a spot with at least a few remaining endothelial cells. An irregular, "wavy" surface of the anterior corneal epithelium is a preparation artefact.
Cornée VG Cornea, rat - H&E and Cornea, monkey - van Gieson Identified the layers of the cornea. Keratocytes are easiest to identify in H&E stained sections. The posterior endothelium may not be well preserved. If that is the case in your section, scan along the posterior boundary of the cornea and see if there is a spot with at least a few remaining endothelial cells. An irregular, "wavy" surface of the anterior corneal epithelium is a preparation artefact.
Corps ciliaire 1 http://www.lab.anhb.uwa.edu.au/mb140/addons/mcqquiz.htm Blue histology West Australia Eye, monkey, van Gieson The iris, ciliary body, sclera and cornea meet at the iridocorneal angle, where you also can see the trabecular meshwork and the canal of Schlemm. Prendre aussi le Quizz
Corps ciliaire 2
Sphincter de l’iris
iris
cristallin
Fibres du cristallin The optical properties of the lens change from periphery to central parts because of differences in the amounts of crystallins contained in lens fibres. These difference correct for distortions of colours and shapes (called spherical and chromatic aberrations) which commonly occur at the margins of glass lenses. These aberrations are easy to observe when you look through a loupe - or even in not-so-good microscopes at the margins of the field of view, where they are easy to detect when to slide is moved
cristallin lens, lens epithelium, lens capsule ctsy Paul McMenamin, ANHB
Rétine HE Suitable Slides The eyes of most mammals are suitable to look at the general organization of the retina. However, the retina of some mammals does not contain cones, and, as mentioned before, cell layers which would be pigmented in normal humans will not be so if the eye has been collected from an albino (many laboratory strains of small ammals are albinoid). Retina, monkey, methylene blue and Retina, albino rat, H&E You will probably not be able to identify the inner and outer limiting membranes. The other layers should not be a problem. Ganglion cell density is quite variable and, although some ganglion cells will always be visible, they may not form a continuous layer
Rétine bleu de méthylène Suitable Slides The eyes of most mammals are suitable to look at the general organization of the retina. However, the retina of some mammals does not contain cones, and, as mentioned before, cell layers which would be pigmented in normal humans will not be so if the eye has been collected from an albino (many laboratory strains of small ammals are albinoid). Retina, monkey, methylene blue and Retina, albino rat, H&E You will probably not be able to identify the inner and outer limiting membranes. The other layers should not be a problem. Ganglion cell density is quite variable and, although some ganglion cells will always be visible, they may not form a continuous layer
Rétine bleu de méthylène 2
NO Optic nerve, monkey, van Gieson The organisation of the optivc nerve corresponds at a first glance to that of peripheral nerves. Differences relate to the connective tissue surrounding the nerve and the fascicles of nerve fibres. In the optic nerve, the dura mater, arachnoid and pia mater take the roles of the epi-, peri- and endoneurium of peripheral nerves. Narrow cleft-like spaces are found between the meninges, forming the subdural space (between dura and arachnoid) and subarachmoid space (between arachnoid and pia). These spaces may expand during tissue preparation due to differential shrinkage of the tissues and appear much wider than they are in the living organism. This applies also to the optic nerve illustrated.
conjonctive 20 X conjonctive eye, monkey AB/VG conjunctiva, conjunctival gland, goblet cells
Q334.jpg QUIZZ ciliary body 1 Cornea 2 Iris 3 Choroid 4 Q334.jpg Glhop/mes images/images œil/westernaustraliablue eye/quizz ciliary body cornea Iris 3 good choroid
Q335.jpg iridial stroma 1 posterior epithelium 2 trabecular meshwork 3 corneal stroma 4 Q335.jpg iridial stroma 1 good posterior epithelium trabecular meshwork corneal stroma
Q336.jpg subcapsular epithelium 1 anterior corneal epithelium 2 posterior epithelium 3 Corneal stroma 4 Q336.jpg subcapsular epithelium 1 anterior corneal epithelium 2 posterior epithelium 3 good corneal stroma 4
Q337.jpg Cornea 1 Lens 2 ciliary body 3 Retina 4 cornea Lens 2 good
Q338.jpg trabecular meshwork 1 posterior epithelium 2 lens capsule 3 anterior limiting layer 4 Q338.jpg Q338.jpg trabecular meshwork posterior epithelium lens capsule 3 good anterior limiting layer
Q339.jpg lens capsule 1 subcapsular epithelium 2 posterior limiting layer 3 dilator pupillae muscle 4 Q339.jpg lens capsule subcapsular epithelium 2 good posterior limiting layer dilator pupillae muscle
Q340.jpg Retina 1 ciliary body 2 Lens 3 Iris 4 Q340.jpg Retina 1 good
Q341.jpg ganglion cell layer 1 outer nuclear layer 2 inner nuclear layer 3 inner plexiform layer 4 ganglion cell layer 1 good outer nuclear layer inner nuclear layer inner plexiform layer
Q342.jpg outer plexiform layer 1 ganglion cell layer 2 inner plexiform layer 3 layer of rods and cones 4 1 outer plexiform layer ganglion cell layer inner plexiform layer 3 layer of rods and cones
Q343.jpg inner plexiform layer 1 outer plexiform layer 2 inner nuclear layer 3 outer nuclear layer 4 inner plexiform layer outer plexiform layer inner nuclear layer 3 good outer nuclear layer
Q344.jg inner nuclear layer inner plexiform layer outer plexiform layer 3 good layer of rods and cones
Q345.jpg outer nuclear layer 1 good ganglion cell layer layer of rods and cones inner plexiform layer
Q346.jpg inner nuclear layer ganglion cell layer inner plexiform layer layer of rods and cones 4 good
Q347.jpg 4 cornea http://www.lab.anhb.uwa.edu.au/mb140/addons/mcqquiz.htm Q347 Identify a histological feature Retina 1 ciliary body 2 Lens 3 Cornea 4 = good
Q348.jpg posterior epithelium corneal stroma lens capsule anterior corneal epithelium 4 good
Q349.jpg lens capsule 1 corneal stroma 2 Q349 constrictor pupillae muscle 3 Bowman's layer 4 Q349 lens capsule 1 corneal stroma 2 constrictor pupillae muscle 3 Bowman's layer 4 good
Q350.jpg anterior corneal epithelium corneal stroma 2 good anterior chamber lens capsule
Q351.jpg 51 posterior epithelium subcapsular epithelium anterior chamber posterior limiting layer 4 good
Q352.jpg lens ciliary body 2 good retina cornea
q353.jpg cornea ciliary body Choroid 3 good retina
Q355.jpg trabecular meshwork dilator pupillae muscle 2 good iridial stroma Bowman's layer
Q356.jpg canal of Schlemm 1 good anterior corneal epithelium posterior epithelium iridial stroma
Q358.jpg posterior epithelium lens capsule corneal stroma anterior chamber 4 good
Q359.jpg constrictor pupillae muscle posterior chamber 2 good subcapsular epithelium anterior corneal epithelium
-- Embryon de poisson zèbre Zebra fish en fluorescence avec YFP après transfection pub Olympus pour loupe à fluorescence Croisement des nerf optiques (chiasma) Catherine Brown Heidelberg EMBL Microscopy and Analysis 2006 issue 99 European Edition front cover