MATIÈRE Les images thermiques Les lois physiques d’émission

Slides:



Advertisements
Présentations similaires
Les spectres de la lumière
Advertisements

LES SPECTRES DE LUMIERE
Rappels sur l’Infrarouge
Température du Soleil.
Sources de lumière colorée
PRODUCTION D’ÉLECTRICITÉ.
5.4 L’énergie thermique.
Pour le moment dans notre cours:
MODÈLE DE BILAN D’ÉNERGIE TERRESTRE
ECHANGES D’ENERGIE Caractéristiques du rayonnement Bilan radiatif
Pratique: Page 25 #1-6, 11,12.
Astrophysique et astrochimie
Système d’information géographique
1) Lémission de rayonnement Contenu scientifique : J.L. Dufresne ; Réalisation : S. Jamili Laboratoire de Méteorologie Dynamique, Institut Pierre Simon.
Un nouveau sujet.
Les images thermiques.
Vu les questions détaillant la synthèse, le barême reprend les différents points clés demandés :
Le comportement des gaz
Un concept important dans l’étude de la météorologie
1) Lémission de rayonnement Contenu scientifique : J.L. Dufresne ; Réalisation : S. Jamili Laboratoire de Méteorologie Dynamique, Institut Pierre Laplace;
Spectre d'émission et d'absorption: les messages de la lumière.
Club d'Astronomie Lycée Saint Exupéry Lyon
Module 2C Les images thermiques.
Pour faire des prévisions, on a besoin de modèles…
Chapitre 9: Les débuts de la théorie quantique
La radiation dans l’atmosphère
Les satellites Le rayonnement solaire réfléchi par les objets
Rayonnement et effet de serre
Un concept important dans l’étude de la météorologie
MATIÈRE Les images du rayonnement solaire réfléchie (suite et fin)
Chapitre 3 Sources de lumières colorées
1ère S - Observer I.3 : Couleurs et sources de lumière
Couleurs et images.
Sources de lumière colorée
Chapitre 9: Les débuts de la théorie quantique
CLIMATOLOGIE ≠ METEOROLOGIE
Qu’est ce que le lumière?
Les messages de la lumière
RADIATION (PARTIE 2) Effet des nuages sur la température
Bases scientifiques du changement climatique
RADIATION (PARTIE 2) Effet des nuages sur la température Effet de serre Variation dans le temps du bilan énergétique.
Unité : Changement Climatique
Couche limite atmosphérique
La convection L’air et l’eau – transfert d’énergie thermique
Jour 5 - Le Cycle Hydrique (Le cycle de l’eau)
Réponses aux questions Page Le rayonnement. La Terre ne touche pas le soleil directement alors l’énergie solaire doit être transfert par les ondes.
Notions de thermographie. Spectre d’émission des corps noirs.
I Les spectres d’émission
La radiation dans l’atmosphère
MATIÈRE Les images numériques - introduction.
MATIÈRE Initiation aux images satellitales de résolution spatiale moyenne à haute: images du rayonnement solaire réfléchi Le rayonnement solaire.
Rayonnement des corps célestes et observation Corrigé.
Thème : L’Univers Domaine : Les étoiles
Couche limite atmosphérique Conditions frontières.
Modélisation du signal de télédétection
Les manifestations naturelles de l’énergie
Spectromètre UV-Visible
L'observation des étoiles
Télédétection et environnement
Le bilan énergétique de la Terre
L‘Effet de serre.
Prétraitements On appelle prétraitements d’image toute opération visant à modifier le contenu de l’image (géométrie et/ou radiométrie) d’origine pour.
PAGE 25 #1-14 Réponses. 2. Biosphère: - atmosphère (l’air), lithosphère (la terre) et l’hydrosphère (l’eau) 3. La lumière visible, le rayonnement infrarouge.
EMSCA3641, Radiation Radiation : solaire. EMSCA3641, Radiation Radiation : terrestre.
Conversion des luminances en températures dans le cas des images du rayonnement émis par les objets.
Transfert de chaleur par rayonnement
La Thermographie infrarouge
GEO2522-Séance 1 LES IMAGES NUMÉRIQUES DE TÉLÉDÉTECTION.
Espace et atmosphère. 1- L’espace : Le flux énergétique émis par le Soleil ( p.336) – Le spectre solaire - Insolation et facteurs qui la font varier :
Les thermographies Quelques notions de base La notion du corps noir
Transcription de la présentation:

MATIÈRE 23-9-2014 Les images thermiques Les lois physiques d’émission L’émission des corps réels Rayonnement solaire et la température des objets

Les images thermiques Les lois physiques d’émission L’émission des corps réels Rayonnement solaire et la température des objets

Transfert radiatif Émission du rayonnement par les objets Rayonnement secondaire par l’atmosphère réfléchi par la surface Passage par l’atmosphère Détection

1. Les lois physiques Tout objet à une température supérieure au zéro absolu émet du RÉM Pour étudier l’émission nous avons recours à un objet idéalisé: le corps noir Un corps noir a la propriété d’absorber toute l’énergie reçue par une source externe et de l’émettre à l’espace ambiant d’une façon isotrope

1. Émission du corps noir [W m-2 µm-1] Loi de Planck : exitance spectrale [W m-2 µm-1] où c1 = 3,742 x 10-16 [W m2] c2 = 1,439 x 10-2 [m K] T = la température cinétique du corps noir (en K) Loi de Stefan-Boltzman Corps noir à une Température T (K)  Densité du flux total émis: M = T4 [ W m-2] où  = la constante de Stefan-Boltzmann=5,669 x 10-8 [W m-2 K-4] La loi de déplacement de Wien Longueur d’onde du pic d’émission d’un corps noir à une Température T (K) C = 2898 [μm K]

Rayonnement émis Rayonnement spectrale émis par divers corps noirs incluant la terre et le soleil. Calculs – Loi de Planck Selon la loi de S.-B.  T croissant donc M croissant Selon la loi de Wien  T croissant donc longueur d’onde du pic d’émission décroissant

Émission vs température: exemple Une ampoule éteinte [à une température ambiante de 27°C (300 Kelvin)] n’émet pas du rayonnement visible, tandis qu’une ampoule dont l’élément est chauffé à 677°C (950 Kelvin) émet la plupart de son énergie dans l’infrarouge moyen et un tout petit peu dans le visible (lumière rouge). Une ampoule incandescente [2223°C (2500 Kelvin)] donne une lumière orangée jaune, bien que seulement 10% de son énergie est émis dans le visible, le reste est émis dans l’infrarouge, et perçu par nous comme de la chaleur

Loi de Wien: exemples μm où C = 2898 [μm K] un feu de forêt à 800 K alors pic d’émission à 2898/800  3,6 μm le soleil est à 6000 K environ alors pic d’émission à 2898/5700  0,5 μm μm où C = 2898 [μm K]

1. Émission d’un corps noir

1. Émission par les objets terrestres Les objets terrestres ne sont pas de corps noirs; la quantité du rayonnement émis par longueur d’onde est moindre de celle prescrit par la loi de Planck. Pour décrire leur émission on introduit une quantité, l’émissivité, qui nous indique la différence entre l’exitance spectrale de l’objet réel et celle du corps noir à la même température cinétique:

1. Émission par les objets terrestres Échantillon de calcaire; sa surface fait 10 cm2 L’émissivité toujours <1 Si l’émissivité demeure constante peu importe la longueur d’onde nous disons que l’objet se comporte comme un corps gris La majorité des objets terrestres ont plutôt une émissivité variable selon la longueur d’onde, on parle alors d’un radiateur sélectif

1. Émission par les objets terrestres Émissivité spectrale d’un corps noir, d’un corps gris et d’un radiateur sélectif hypothétique Exitance spectrale d’un corps noir, d’un corps gris et d’un radiateur sélectif hypothétique à la même température cinétique

1. Émission par les objets terrestres: exemples

Valeurs de l’émissivité dans la bande spectrale 8-14 µm

1. Émission par les objets terrestres: une première conclusion L’exitance spectrale d’un corps réel dépend de sa température cinétique, et de son émissivité à la longueur d’onde examinée. En termes pratiques: si l’on mesure l’exitance spectrale d’un objet on peut déduire sa température cinétique seulement si l’on connaît son émissivité spectrale. Est-ce donc possible d’utiliser un capteur de télédétection pour estimer la température des objets au sol? Pour répondre à cette question reprenons les choses du début

Le cycle diurne des températures Comme le soleil est la source principale du rayonnement qu’un corps puisse absorber, les températures des objets suivent le cycle diurne de l’apport énergétique du soleil à la surface, mais chacun à son propre rythme selon sa composition, sa densité, le taux d’humidité etc.

Le cycle diurne des températures Avant le lever du soleil, l’air (1), la végétation- les Ohias (sorte d’arbre en Hawaï) (2), la route (3) et le basalte ancien (4) gardent une température uniforme. Dès l’aube, vers 7 heures, l’air, la route et le basalte marquent une augmentation rapide de leur température par réchauffement; la reprise de l’activité biologique des plantes se manifeste par un accroissement de leur température suivie d’un palier.

Le cycle diurne des températures Un autre exemple: observations in situ

Le rôle de l’atmosphère Similaire aux images du rayonnement solaire réfléchi (vapeur d’eau importante comme absorbeur + moindres les effets de brume atmosphérique) Les nuages  objets opaques

Les capteurs Balayeurs à époussette jusqu’à tout récemment les seuls à pouvoir générer d’images thermiques Balayeurs à râteau de plus en plus le standard

Les images du rayonnement émis: exemples Sensibilité spectrale Mono-spectrale: Landsat-7 ETM6 : résolution spatiale 60 m x 60 m (Attention Landsat-5 TM6 120 m x 120 m)

Exemple d’une thermographie de nuit par Landsat

ASTER (satellite TERRA) - un exemple d’un système de capteurs polyvalent Infrarouge thermique 5 bandes spectrales

ASTER-TIR: 5 bandes à une résolution de 90 m x 90 m

Les images du rayonnement émis: les images TIR (5 bandes) d’ASTER ASTER: VIS IRT

Illustrations

Différents objets

Les objets fantômes

Le relief

Pollution thermique des milieux aquatiques Centrale nucléaire Salem sur les rives de Delaware

émissaire Baie à protéger Marée ascendante émissaire Baie à protéger 8:00 h Est que le panache thermique peut causer de dommages à la baie? Mouvement de la marée Une hausse de la température de l’eau à l’intérieur de la Baie > 10 C n’est pas tolérable Marée basse 5:59 h Marée descendante Centrale thermique 14:20 h Marée haute Thermographies prises par le capteur aéroporté DEADALUS en hiver (deux jours consécutives) 10:59 h

Pollution thermique des milieux aquatiques Centrale nucléaire Salem sur les rives de Delaware

Applications - Exemple 1: Pollution thermique des milieux aquatiques Image thermique réorientée (corrections géométriques) et mise à la même échelle que l’image couleur