Ch 2 Les indices Un indice est un outil de comparaison, comparaison dans le temps ou dans l'espace. 3 types d'indices :  les indices élémentaires Ex : Indice.

Slides:



Advertisements
Présentations similaires
Débat participatif La vie chère
Advertisements

Qu’est-ce qu’une problématique ? (1)
Le compte de résultat prévisionnel
Qu’est-ce que l’inflation ?
Chap4- Le mix marketing II- La politique de prix
Thème 1A 1-Commentez ces photos. Qu’ont-elles en commun? -2-Formulez un questionnement en une phrase.
GESTION DE PORTEFEUILLE chapitre n° 7
Représentation du fonctionnement de l’économie
Thème 1 : Les indicateurs de la performance macroéconomique
La loi d’Engel Exercice sur la loi d’Engel
Information chiffrée Première
(c) N. Rossignol Voici deux séries de prix Mon salaire, tout comme l'ordinateur que je compte acheter, augmente d'année en année (sauf en 2007 pour mon.
L’EVOLUTION DES PRIX Antony - Océane – Charlotte : 1ère bac pro commerce.
Le principe du multiplicateur
L’INFLATION.
Présentation: NGOK Emmanuel Expert en comptabilité nationale AFRISTAT
Une mesure de l ’évolution dans le temps
Le calcul du PIB et de la croissance économique
Théorie du consommateur lorsque la richesse dépend des prix
Chapitre cinq Calcul économique. Dans ce chapitre u Nous examinons des méthodes pratiques utilisées pour évaluer les projets u Méthodes pratiques: basées.
Le schéma productivité croissance
Chapitre 2 Les indices.
3.4 Inflation et chômage.
08/03/09 1.
Chapitre 8 Equations de Slutsky.
Thème 6 :Comment l’entreprise crée-t-elle de la valeur ?
Chapitre Sept Préférences révélées. Analyse de préférences révélées u Supposons que nous observions les choix de consommation de bien dun ménage confronté
CHAPITRE 5 : La demande Définition de la demande : La demande comprend l’ensemble des acheteurs d’un produit Il existe deux types de demandes : Demande.
Ch 2 Les indices Un indice est un outil de comparaison, comparaison dans le temps ou dans l'espace. 3 types d'indices :  les indices élémentaires  une.
La stoechiométrie : calculs chimiques
Chapitre 8 Equations.
Ce qui disparait du nouveau programme Introduction « La démarche des sciences des sciences économiques et sociales » (1 semaine) « La famille, une institution.
13/09/07 MATHÉMATIQUES FINANCIÈRES I Quatrième cours.
Le coefficient multiplicateur Une mesure de l ’évolution dans le temps
LES INDICES STATISTIQUES.
08/03/09 1.
Comparaisons de systèmes de coûts
Chapitre 2 : La mesure de l’activité économique
Valeur ou Volume. Prix courants ou Prix constants
Présentation du marché obligataire
Le financement de l’économie
CHAPITRE III Calcul vectoriel
Notions de coûts et prise de décision
Statistiques Licence 2 LEA
Consommation d ’essence
1 OFFICE NATIONAL DE LA STATISTIQUE (ONS) PRESENTATION GENERALE DE L’IHPC Guisset Dialel, ONS - 16 Juin 2004 Hôtel Halima.
Pour les boucles FOR on a fait intervenir la boucles TANT QUE équivalentes dont on connaît calculer le temps d’exécution. Toutes le procédures de comptage.
MATHÉMATIQUES FINANCIÈRES I
02/10/07 MATHÉMATIQUES FINANCIÈRES I Neuvième cours.
Les indicateurs macroéconomiques
Fiches Méthodologiques
Partie 2: Équations plus complexes
Post-optimisation, analyse de sensibilité et paramétrage
PIB nominal = PIB en valeur = PIB en euros courants.
PIB et Croissance Révisions de première.
Les modes de calculs d’un
Les contributions à la croissance du PIB et les points de pourcentage
PIB et Croissance Révisions de première En valeur, en volume Indices.
Tout comprendre au Taux de Croissance Annuel Moyen (TCAM)
Chapitre 3 – Variation en pourcentage
FICHE METHODOLOGIQUE n°3
Thermochimie Application du 1er principe
Fiche n°2 des savoir-faire applicables aux données quantitatives et aux représentations graphiques.
des savoir-faire applicables aux données quantitatives
La demande.
Fiche n°3 des savoir-faire applicables aux données quantitatives et aux représentations graphiques.
LES POSTULATS DE LA MÉCANIQUE QUANTIQUE
Les indices du commerce extérieur (ICE) méthodologie et réforme.
Chapitre 16 Questions à préparer-SOLUTIONS Traitez soit les questions 1 à 3 et choisissez en outre la question 4 ou la question 5. Préparation évaluée.
Chapitre 4: Variation dans le temps  Les données : audience totale en milliers (tableau 4.1, p. 47, extrait) o Origine : enquête sur les habitudes d’écoute.
Transcription de la présentation:

Ch 2 Les indices Un indice est un outil de comparaison, comparaison dans le temps ou dans l'espace. 3 types d'indices :  les indices élémentaires Ex : Indice du SMIC les indices synthétiques Ex : Indice des salaires IPC Indices boursiers les indices composites Ex : Indice général d'activité d'une branche industrielle Dans ce chapitre : Indices composites laissés de côté Examen des indices synthétiques Avant cela, rappel des propriétés des indices élémentaires.  On considérera le cas d'indices temporels. Mais même chose pour les indices spatiaux.

I. Les indices élémentaires On considère la grandeur x observée à ≠ dates (0, 1, …, n). Examen des propriétés des indices élémentaires. I.1. L’identité Propriété totalement évidente : avec t quelconque. : indice de la grandeur x en t, base 100 en 0

Soit une grandeur observée aux dates (0, …, n), on a I.2. La transitivité ou “circularité” ou “transférabilité” Généralisation Soit une grandeur observée aux dates (0, …, n), on a (date de fin – date de départ) - 1

 Avantage de cette propriété : elle rend les indices enchaînables Ex : tableau 1.2d du Ch. 1 Cette propriété permet donc le changement de base  Soient 2 dates quelconques t et t', on a base 100 en 0 base 100 en t’

Ex : =100*D6/$F6 Ce qu’on veut faire : transformer les indices base 100 en 1980 en indices base 100 en 2000 Il suffit de diviser chq indice de la série base 100 en 1980 par l'indice pour 2000 base 100 en 1980 et de multiplier le résultat par 100.  Inconvénient des indices-chaînes : Les erreurs de calcul sur un maillon se répercutent sur la chaîne.

I.3. La réversibilité Se déduit des propriétés d'identité et de transitivité. I.4. Propriété de l’indice d’un produit L'indice élémentaire d'un produit est égal au produit des indices élémentaires. Soient les variables x et y,

On parle de “réversibilité par rapport aux facteurs (I. Fisher).  Propriété très intéressante, notamment quand les variables considérées sont le prix (p) et la quantité (q). prix x quantité = valeur  Indice de valeur = ind. de prix x ind. de quantité On peut ainsi passer d'une évolution en volume à une évolution en valeur - et réciproquement.

 Evolution de la fréquentation = évolution en volume Evolution des recettes = évolution en valeur On peut en déduire l’évolution du prix de l’entrée. Raisonnons en indices : i.e. augmentation de 2,2% du prix d’entrée entre 08 et 09.

Q° de révision du ch. précédent : De quel pourcentage la fréquentation a-t-elle varié entre 2006 et 2009 ? Et les recettes ?  Réponses : … pour la fréquentation, … pour les recettes. De quel pourcentage la fréquentation a-t-elle varié par an, en moyenne, sur la période 2006-09 ? Et les recettes ? Sachant que le nb d'entrées s'élevait en 09 à 200,9 millions, combien y a-t-il eu de spectateurs en 05 ?  Réponses : … millions.  Pour le mode d’obtention des résultats, voir la feuille ‘Q° tableau 2.2’ du fichier Excel des tableaux du ch. 2 sur l’EPI.

II. Les indices synthétiques Ex : consommation des ménages - Cf. tableau 2.3

Considérons une grandeur complexe X constituée de k grandeurs "simples" : X = {x1, x2,…, xk}. On s'intéresse à 2 caractéristiques des xi : leurs prix {p1, p2,…, pk} et les quantités achetées {q1, q2,…, qk} à 2 dates différentes, 0 et n. On notera pi0 le prix de la grandeur i à la date 0, pin : son prix à la date n, qi0 la quantité achetée en 0, qin : la quantité achetée en n  Comment rendre compte de l'évolution de la grandeur complexe X entre 2 dates, de l'évolution de “son prix” et de celle de “sa quantité” ?

 On peut raisonner sur la dépense globale  On calcule l’indice de valeur en n, base 100 en 0 : Mais quelles sont les causes de cette variation ? Variation des prix ? Des quantités ? Des 2 à la fois ? Pour quelles parts ?

 Pour différencier effet-prix et effet-quantité, on va considérer comme fixe l’une des 2 variables (prix ou quantité). Q° : A quel niveau figer les prix ou les quantités ? A leur niveau en 0 ? à leur niveau en n ? ou à leur niveau à une date intermédiaire ? II.1. Principe de construction des indices synthétiques Si l’on s’intéresse à la variation des prix entre 0 et n, on raisonne à structure de consommation donnée, i.e. quantités consommées à une certaine date t (quantités q1t , q2t ,…qit , ..., qkt).

Variation des prix entre 0 et n mesurée par l'indice : i.e. on pondère le prix de chaque bien par la quantité consommée de ce bien en t. Si l’on s’intéresse à la variation des quantités consommées entre 0 et n, on raisonne à structure de prix donnée. Variation des quantités entre 0 et n mesurée par l'indice : i.e. on pondère la quantité de chaque bien par son prix mesuré en t.

 Distinction indice de Laspeyres et indice de Paasche : Laspeyres  Choix de la date de départ (i.e. t = 0), Paasche  Choix de la date d'arrivée (i.e. t = n). II.2. L’indice de Laspeyres Indice rétrospectif II.2.1. L’indice des prix de Laspeyres ce qu’auraient coûté en n les quantités consommées en 0 ce qu’ont coûté en 0 les qu. consommées en 0

Ex  Mesurée avec un indice de Laspeyres, l’évolution du prix des viennoiseries est de + 17,5% entre 0 et 1 et de + 35% entre 0 et 2, + 15,6% entre 1 et 2. Q° : Quelle formule doit-on utiliser pour calculer L1/0(p) et pour obtenir L2/0(p) par simple recopie vers le bas ? Rép : =

 Autre expression de l'indice des prix de Laspeyres : On peut le calculer à partir  des indices de prix élémentaires et des coefficients budgétaires.  Indice élémentaire du prix du bien i en n base 100 en 0 :  Coef. budgétaire du bien i en 0 : Cf. Tableau 2.3

Ex

 Réécriture de l'indice des prix de Laspeyres en n, base 100 en 0 : i.e. moyenne arithmétique des indices élémentaires de prix en n, base 100 en 0, pondérée par les coefficients budgétaires à la date 0.

Q° : La formule utilisée pour calculer L1/0(p) est =G6*E7+H6*F7 Ex Q° : La formule utilisée pour calculer L1/0(p) est =G6*E7+H6*F7  Que donne-t-elle si on la recopie vers le bas ? La formule devient … A quoi correspond-elle ? A rien. En particulier, elle ne donne pas L2/1(p). Pour calculer cet indice, il faudrait connaître les indices élémentaires de prix en 2 base 100 en 1. On peut les déduire des indices base 100 en 0 : I2/1(p) = 100x I2/0(p)/ I1/0(p) = 120 pour les croissants, 109,1 pour les brioches On a alors L2/1(p) = 0,6x120 + 0,4x109,1 = 115,6.

II.2.2. L’indice des quantités de Laspeyres ce qu’auraient coûté en 0 les quantités consommées en n ce qu’ont coûté en 0 les qu. consommées en 0 Autre expression de l'indice des quantités de Laspeyres à partir des indices de quantité élémentaires et des coefficients budgétaires. i.e. moyenne arithmétique des indices élémentaires de quantité en n, base 100 en 0, pondérée par les coef. budgétaires à la date 0.

Ex Q° : Quelle formule permet de calculer L1/0(q) et d’obtenir L2/0(q) par simple recopie vers le bas à partir des données brutes ? à partir des ind. élém. et des CB ? Rép a. =100*(E$5*C6+F$5*D6)/(E$5*C$5+F$5*D$5) ou =100*SOMMEPROD(E$5:F$5;C6:D6)/SOMMEPROD(E$5:F$5;C$5:D$5) b. =G$17*C18+H$17*D18 ou =SOMMEPROD(G$17:H$17;C18:D18)

Autre expression de l'indice des prix de Paasche à partir II.3. L’indice de Paasche ce qu’ont coûté en n les quantités consommées en n Indice prospectif II.3.1. L’indice des prix de Paasche Autre expression de l'indice des prix de Paasche à partir des indices de prix élémentaires et des coef. budgétaires : i.e. moyenne harmonique des indices élémentaires de prix en n, base 100 en 0, pondérée par les coef. budgétaires à la date n. ce qu’auraient coûté en 0 les qu. consommées en n

II.3.2. L’indice des quantités de Paasche ce qu’ont coûté en n les quantités consommées en n ce qu’auraient coûté en n les qu. consommées en 0 Autre expression de l'indice des quantités de Paasche à partir des ind. de quantité élémentaires et des coef. budgétaires. i.e. moyenne harmonique des indices élémentaires de quantité en n, base en 0, pondérée par les coef. budgétaires à la date n.

Ex : Calcul d’indices de Paasche à partir des données brutes

Ex : Calcul d’indices de Paasche à partir des indices élémentaires et des coef. budgétaires

II.4. Comparaison des indices de Laspeyres et de Paasche Plus de données nécessaires pour le calcul d'une série d'indices de Paasche Paasche  Les pondérations changent à chaque nouvelle date considérée (t+1, t+2…) Laspeyres  Pondérations fixes (pondération par les valeurs à la date de base) Valeurs différentes avec Laspeyres et Paasche pour une même évolution. 2 explications : Type de moyenne utilisé (Cf. relation d’ordre entre les moyennes vue au ch. précédent) Situation de référence choisie Ex. de M.L. Levy ("Les indices", Cahiers Français, mars-avr 1988)

Illustration : La mesure de l’inflation Si l’indice des prix à la consommation est un indice de Laspeyres, surestimation de l’inflation (biais de substitution) un indice de Paasche, sous-estimation. En France, l’IPC utilisé pour mesurer l’inflation est un indice de Laspeyres. Mais les pondérations sont actualisées tous les ans par l’INSEE. Enjeu socio-économique de l’IPC : il sert à indexer un certain nombre de revenus.  Indexer un revenu sur l’IPC = revaloriser ce revenu en fonct° de l’évol° de l’indice de sorte que son pouvoir d’achat soit préservé.  Pour déterminer l’évol° du pouvoir d’achat d’un revenu (i.e. évol° du revenu réel), on rapporte la ∆° du revenu nominal à la ∆° des prix.

Tableau 2.5 De 07 à 08, le Smic horaire brut a varié quasiment comme les prix (+3% pour l’un, +2,8% pour les autres). Le pouvoir d’achat du Smic horaire brut n’a donc quasiment pas évolué entre 07 et 08 (+0,2%) De 08 à 09, le Smic horaire brut a été multiplié par 1,019 alors que les prix n’ont quasiment pas bougé (multipliés par 1,001). Entre 08 et 09, le pouvoir d’achat du Smic horaire brut a donc été multiplié par 1,019/1,001 = 1,018, i.e. a augmenté de 1,8%.

III. Propriétés des indices synthétiques Propriété d’identité : oui Mais aucune des 3 autres propriétés vues au I supra. III.1. Les indices de L. et de P. ne sont pas transitifs Considérons le cas d’un Laspeyres des prix. Même chose pour les autres indices.  Cette non-transitivité (ou non-transférabilité) des indices de L. et de P. pose un pb pour leur raccordement en cas de changement de base.

 Illustration avec l’IPC (indice de Laspeyres) Depuis 1970, l'INSEE actualise les pondérations tous les ans. Les indices de prix sont publiés dans une base commune, actuellement la base 1998. Comment exprimer les indices successifs dans une même base (base 1998) ? Comme les indices de Laspeyres ne sont pas transférables, L99/98 x L00/99 ne donne pas L00/98 x 100 (par exemple). La solution retenue par l'INSEE est de faire comme si les indices étaient transférables. Les indices publiés par l'INSEE qui sont exprimés dans une base commune sont des indices de Laspeyres chaînés. Ce ne sont pas de “vrais” indices de Laspeyres, ce sont des chaînes de Laspeyres.

 Inconvénients des indices-chaînes : o Conservent les éventuelles erreurs de calcul faites sur un maillon. o Surtout, leur significat° éco. est floue.  Intérêt : o Intègrent les modifications successives => Atténuent le biais de substitut° (cf. supra). o Par construction, les indices-chaînes sont transférables.

III.2. Les indices de L. et de P. ne sont pas réversibles Ni par rapport aux situations considérées, ni par rapport aux facteurs. III.2.1. Non-réversibilité par rapport aux situat° considérées Mais on constate que le dénominateur est égal à Pn/0(p) / 100. On a donc De même,

Par suite, si on multiplie un indice de Laspeyres par un indice de Paasche, on obtient un indice réversible par rapport aux situations considérées. Indice de Fisher : moyenne géométrique des indices de Laspeyres et de Paasche : Indice assez complexe à calculer ; peu utilisé.

III.2.2. Non-réversibilité par rapport aux facteurs Le Laspeyres d'un produit n'est pas égal au produit de Laspeyres. Idem pour Paasche. Considérons le produit pxq.  Produit des Laspeyres des prix et des quantités : Laspeyres du produit : On voit immédiatement que les 2 ne correspondent pas.

2 décompositions de la variation en valeur, Mais on montre très facilement que l'indice de valeur peut s'écrire comme le produit croisé d'indices de Laspeyres et de Paasche : 2 décompositions de la variation en valeur, 2 évaluations différentes de l'effet-prix et de l'effet-quantité Ex : Tableau 2.4  L2/0(p). P2/0(q) / 100 = 135,0 x 166,7 / 100 = 225,0 i.e. l’augm° en valeur de 125% se décompose en une augm° des prix de 35% et une augm° des quantités de 66,7%.  P2/0(p). L2/0(q) / 100 = 138,5 x 162,5 / 100 = 225,0 i.e. l’augm° en valeur de 125% se décompose en une augm° des prix de 38,5% et une augm° des quantités de 62,5%.

III.3. Les indices de L. et de P. sont agrégeables Ex Propriété d’agrégation Indice des prix de Laspeyres du groupe “Produits manufacturés” = moyenne arithmétique pondérée des indices des prix de chq catégorie, pondérat° par la part de chq catégorie dans le budget “Produits manufacturés”. Ljuil11(prix Pdts manuf) = 0,150x92,4 + 0,151x85,8 + 0,699x102,7 = 98,6

I. Les indices élémentaires PLAN du chapitre I. Les indices élémentaires I.1. L’identité I.2. La transitivité I.3. La réversibilité I.4. Propriété de l’indice d’un produit II. Les indices synthétiques II.1. Principe de construction des indices synthétiques II.2. L’indice de Laspeyres II.2.1. L’indice des prix de Laspeyres II.2.2. L’indice des quantités de Laspeyres II.3. L’indice de Paasche II.3.1. L’indice des prix de Paasche II.3.2. L’indice des quantités de Paasche II.4. Comparaison des indices de Laspeyres et de Paasche

III. Les propriétés des indices synthétiques III.1. Les indices de L. et de P. ne sont pas transitifs III.2. Les indices de L. et de P. ne sont pas réversibles III.2.1. Non-réversibilité par rapport aux situations considérées III.2.2. Non-réversibilité par rapport aux facteurs III.3. Les indices de L. et de P. sont agrégeables