Modèles d’attraction spatiale http://www.mastermarketingdauphine.com/charge/Modele/Gravitaire.xls
Objectifs Prendre en compte l’effet de l’espace sur les comportements Application à l’estimation du potentiel d’un magasin Attraction réalisée sur le potentiel d’une zone géographique Intensité de la concurrence dépend de la proximité géographique
Démarche de modélisation Modèle : Valeur ou Utilité =f (Bénéfices, Coûts) Coûts = déplacement (temps, dépense, distance) selon le mode Bénéfices = valeur hédonique, utilitaire, sociale Selon le motif : information, achat, butinage, sortie familiale Étudier les caractéristiques de l’achat Fréquence d’achat, recherche de variété,… « zoner » : définir l’unité géographique de base : ville, commune, iris,… Définir les magasins potentiels et leurs caractéristiques Calculer les distances zone-magasin (temps, distance,…) Mesurer les flux de visites Modéliser les comportements et calculer les sensibilités aux différentes variables magasin Utiliser le modèle Etudier les écarts, simuler des implantations
Modèle d’attraction Part de marché mi = Ai / ( Sj Aj) A = Fonction d’attraction multiplicative : Ai = b0 Pi b1 (modèle MCI) exponentielle : Ai = exp (b0+ S bi Pi) (modèle logistique) Technique Linéarisation ? Ratio à une marque de référence Pour celle-ci, ratio à la Moyenne géométrique des valeurs Hypothèse de l’indépendance des alternatives non pertinentes (IIA) ou concurrence proportionnelle Contournement de cette hypothèse par : (1) probit, (2) modélisation des relations entre les marques
Loi de REILLY (1929) L’intensité de la concurrence est déterminée par l’inverse de la distance (en puissance) Loi de gravitation du commerce de détail (Loi de Newton) "Si 2 pôles (i et j) en compétition sont également accessibles et (également ) performants, toutes choses égales par ailleurs, ces centres attirent les achats des populations situées entre eux en raison directe du nombre d'habitants (P) et en raison inverse du carré des distances qu'il faut parcourir pour s'y rendre, (D). Aij = a (Pi) / Dij b Les flux diminuent en fonction du carré de la distance (modèle de base b = 2) L'exposant b varie (de 0.4 à 3.3) selon le degré de fluidité des échanges, Il est plus élevé pour les grandes villes
Illustration Loi de REILLY
CONVERSE (1949) Converse P. D CONVERSE (1949) Converse P.D. (1949), New laws of retail gravitation, Journal of Marketing, 14, 379-384 Recherche des points de rupture des zones de chalandise Point de partage entre zones d'attraction pas de graduation de l'emprise approximatif, rapide, marchait bien pour une civilisation rurale Variables « plancher commercial » plutôt que population « temps de trajet » plutôt que distance
Modèle gravitaire HUFF HUFF D. L Modèle gravitaire HUFF HUFF D. L. (1964) Defining and Estimating a Trading Area, Journal of Marketing, Vol 28, p. 38. Elaboration du modèle du point de vue de la demande (à un point « i ») Une approche probabiliste : possibilité de fréquenter plusieurs magasins (« j ») Probabilité de fréquentation de j par un client potentiel habitant en i est égale à l’utilité relative de ce magasin sur la somme des utilités des magasins qui sont considérés = Uij / Sn Uik « Utilité » d’un point de vente « j » : Uij = Sj /(Tij)b Utilité : S, taille du magasin (en m2) T, temps d’accès b, pondération du temps d’accès selon le type de produit considéré n, ensemble des magasins considérés à partir de la zone « i »
Modèle gravitaire de HUFF Illustration
Généralisation MCI, MICS M. Nakanishi, L. G Généralisation MCI, MICS M.Nakanishi, L.G. Cooper, Simplified Estimation Procedures for MCI Models ,Marketing Science, Vol. 1, No. 3 (Summer, 1982), pp. 314-322 Modèle à interaction concurrentielle multiple (subjective) Généralisation de Huff pour contourner ses limites Modèle différent par catégorie de biens, Homogénéité des produits vendus, Autres variables explicatives de la fréquentation « Attraction » d’un point de vente « j » : Aij = Pk Xijk ak Probabilité de fréquentation P= Aij / Sn Aik n magasins considérés, k variables considérées X : variable Distance (km, temps), parking, taille magasin, Image du magasin, prix, … Objective ou subjective a coefficient de sensibilité de l’attraction à la variable Méthode d’estimation simple (régression linéaire) des coefficients des variables
Méthodologie Définition des zones Détermination du potentiel des zones (habitants, revenus,…) Identification des concurrents Caractéristiques des concurrents (taille, service, image, horaires, parking,…) Pour chaque zone, collecte des parts de visites sur chaque magasin Estimation des coefficients des variables pour reconstituer les parts de visite Hypothèses sur les paniers Utilisation en simulation de valeur d’emplacements
Avantages & Inconvénients + Prise en compte de la concurrence Mais avec l’hypothèse IIA - Valeurs subjectives plus qu’objectives Même pour la distance Hypothèse de continuité ? Si barrière naturelle, organisation historique de la ville,… Collecte de données assez lourde Voies de recherche En 2 étapes : distances d’abord et valeur magasin en résidu Puis Explication de la valeur du magasin par des variables d’action