Physiologie respiratoire
INTRODUCTION 1 -La fonction principale du poumon est de permettre des échanges gazeux, c'est-à-dire à l'oxygène de l'air atmosphérique de pénétrer dans le sang veineux et au gaz carbonique d'en sortir.(hématose) -En plus de cette fonction hématosique, le poumon exerce des fonctions d'épuration (élimination des particules pénétrant dans l'arbre aérien) et des fonctions métaboliques (régulation du pH)
L’appareil respiratoire: 3 fonctions Hématose: ventilation, échange gazeux, et transport gazeux Protection contre les agents pathogènes (infectieux ou toxiques) Fonction métabolique: équilibre sanguin acide/base (phoniatrie)
INTRODUCTION 2 La fonction hématosique est assurée d'abord par des échanges de gaz entre l'air ambiant et les alvéoles (ventilation), puis par le passage de ces gaz à travers la membrane alvéolo- capillaire (diffusion), enfin par le transport de ces gaz dans le sang (circulation). Ces 3 étapes vont être analysées successivement
Le système respiratoire Apport d’O2 et rejet de CO2 I- Anatomie du système respiratoire 2 zones à distinguer : Zone de conduction Zone respiratoire
A- Zone de conduction Du nez aux bronchioles Nez, cavité nasale Pharynx, Larynx Trachée Bronches Bronchioles Fonctions: Acheminer l’air Filtrer l’air Réchauffer l’air Humidifier l’air
Les voies aériennes supérieures: Nez, bouche, pharynx, larynx. Rôle essentiel pour l’épuration de l’air et les échanges thermiques. NEZ: air réchauffé à 37° et saturé en vapeur d’eau, grâce aux replis et reliefs de la muqueuse. Résistance à circulation de l’air. BOUCHE: moins de résistance (effort) PHARYNX: contraction des muscles à l’inspiration pour éviter collapsus. LARYNX: valve de sécurité pour éviter fausses routes. Zone de rétrecissement et de résistance au passage de l’air.
B- Zone respiratoire Fonctions: Echanges gazeux Bronchioles terminales Alvéoles et sacs alvéolaires C- Membrane alvéolo-capillaire 3 couches constituent la MAC: La mb alvéolaire Paroi capillaire Lame basale
Membrane alvéolo-capillaire 100 m² de surface d’échange Membrane alvéolo-capillaire
E- Poumon et Plèvre Chaque poumon est recouvert de la plèvre Feuillet viscéral Feuillet pariétal Cavité pleurale
Mécanique ventilatoire C’est quoi? L’étude des fonctions, des éléments, des forces qui permettent ou qui s’opposent à l’écoulement de l’air par les voies aériennes. Elle est basée sur la loi de Boyle-Mariotte PV= constante De plus, l’air va toujours des hautes pressions vers les basses pressions
MECANIQUE VENTILATOIRE Au repos (apnée), voies aériennes sont ouvertes . Pression dans alvéoles = pression barométrique. A l’inspiration: augmentation du volume pulmonaire. Loi de Boyle Mariotte: pression x volume= constante. Donc, baisse de pression dans alvéoles. D’où, pénétration de l’air dans les voies aériennes, jusqu’à équilibration pression
Au début du cycle : L’INSPIRATION est provoquée par la traction des muscles Inspiratoires. Le volume pulmonaire augmente, ce qui fait diminuer la pression alvéolaire. La pression alvéolaire devient inférieure à la pression barométrique PA < PB: L’air se dirige des hautes vers les basses pressions et donc entre dans les poumons.,
500ml, Volume courant (Vc) C- Phase inspiratoire Contraction des m. insp. (Diaphragme + Intercostaux ext.) Si inspiration forcée: Scalènes, SCM, pectoraux Volume cage thoracique Volume pulmonaire pression intraalvéolaire (palvéolaire < patm ) Ecoulement de l’air des zones de htes p (env) vers zone basses p (poumons)
Forces en présence à l’inspiration Forces motrices : -les muscles inspiratoires -Forces résistantes : -l’élasticité du système respiratoire -les débits dans les voies aériennes -l’inertie du système respiratoire
L’EXPIRATION Elle est due à la relaxation des muscles inspiratoires. -Le volume pulmonaire diminue ce qui fait augmenter la pression alvéolaire. -La pression alvéolaire devient supérieure à la pression barométrique PA > PB. le poumon se vide
Relâchement des muscles inspiratoires D- Phase expiratoire phénomène passif Relâchement des muscles inspiratoires Sauf si expiration forcée: Abdominaux, Intercostaux Int Volume alvéolaire (élasticité pulmonaire) pression intrapulmonaire (palvéolaire > patm ) Ecoulement de l’air hors des poumons
Forces en présence à l’expiration Force motrice : -le retour élastique du système respiratoire Forces résistantes -les débits dans les voies aériennes (résistance plus importante qu’à l’inspiration ) -l’inertie du système respiratoire
Les muscles inspiratoires -Le diaphragme. -Les inter-costaux externes et internes. -Les scalènes. -Les accessoires -Les muscles expiratoires -Les intercostaux internes (parasternaux). -Les abdominaux
Les muscles inspiratoires Diaphragme : -Principal muscle inspiratoire. - 85% du W (75% pendant un effort muscle). - 2 parties : Diaphragme costal : -tendu sur le tendon central -insertion sur la 7ème à12ème côte Diaphragme crural : -fibres entrecroisées et insérées sur les vertèbres et le tendon central. -Rôle de solidité+++, respiration +/-
Diaphragme Intercostaux ext
Sterno Cleido mastoïdien Scalènes Grand pectoral
Notion Pressions partielles L’atmosphère Gaz Teneur Pression partielle Oxygène 20,95 % 159,22 mm Hg (20,9 kPa) Dioxyde de carbone 00,03 % 000,228 (0,03 kPa) Azote 78,08 % 593,41 (78,1 kPa) Argon 00,93 % 007,07 (0,93 kPa)
La cascade de l’O2
Echanges gazeux H2O H2O
Régulation de la ventilation au repos Au repos, Ventilation minute = 6 l.mn-1 Ventilation mn = Vc x Fr Vc: Volume courant, 0,5 l Fr: Fréquence respiratoire, 12 Amplitude respiratoire Rythme respiratoire Centres respiratoires Du bulbe rachidien et pont
Centre de contrôle respiratoire Ce sont des centres nerveux du tronc cérébral qui assurent les mouvements respiratoires (inspiration et expiration). Ces centres contrôlent également un grand nombre de réflexes respiratoires : éternuements, toux, bâillement, inspiration forte au contact de l’eau froide ou lors d’une douleur intense, accélération de la respiration si le sang est riche en gaz carbonique, etc.
Cortex cérébral Hypothalamus Facteurs chimiques Centres respiratoires Diaphragme (force et fréquence de contraction) Amplitude et fréquence respiratoire Ventilation
Facteurs chimiques PpO2art PpCO2 art PpCO2art PpO2 art pH pH Centres respiratoires Diaphragme (force et fréquence de contraction) Amplitude et fréquence respiratoire Ventilation Régulation PCO2 et PO2 art , et pH
PpCO2 pH PpO2 Chémorécepteurs centraux (Bulbe rachidien) Chémorécepteurs périphériques (aorte et carotide) Centres respiratoires
Corpuscules carotidiens Sinus carotidiens Corpuscules aortiques
Bulbe Région rostrale LCR Sensibilité au pH et pCO2
- + PO2 inspirée Chémorécepteurs centraux (sensibles à la PCO2 et au pH) PO2 alvéolaire pH PO2 artérielle PCO2 artérielle Chémorécepteurs périphérique (carotide et aorte) Elimination de CO2 (Reflexe bulbaire) AUGMENTATION de LA VENTILATION - +
D- Régulation de la respiration Chémorécepteurs Générateur de rythme bulbe Mécanorécepteurs pO2, pCO2 et pH
Augmentation du rythme durant l’exercice Stimulation des M respiratoires Générateur de rythme bulbe Augmentation du rythme durant l’exercice
ECHANGES RESPIRATOIRES Echangeur pulmonaire = rencontre de 2 circulations: alvéolaire et capillaire pulmonaire Ventilation pulmonaire: Espace mort = zone de conduction + espace mort alvéolaire (alvéoles ventilées mais nonperfusées) = 0.150 litre
Répartition inhomogène de la ventilation alvéolaire: en raison d’un gradient de pression pleurale liée à a gravité, la quantité d’air circulant dans les alvéoles inférieures est plus grande que celle des alvéoles supérieures
Circulation pulmonaire: débit de circulation pulmonaire = débit cardiaque = 5litres /minute Distribution inhomogène: perfusion pulmonaire meilleure dans la partie inférieure des poumons
DIFFUSION ALVEOLOCAPILLAIRE Quantité d’oxygène qui traverse la membrane alvéolo-capillaire dépend de la surface d’échange, de son épaisseur et de la différence entre pression alvéolaire et pression capillaire en oxygène. Après traversée, fixation de l’O2 à l’hémoglobine des globules rouges. Transport sous forme combinée
CONTRÔLE de la RESPIRATION Cycle respiratoire basé sur une autorythmicité avec boucles de régulation. Centres respiratoires: Dans le tronc cérébral (région bulbo- protubérentielle et partie sup du pont)
VOLUMES PULMONAIRES NVR: niveau ventilatoire de repos VT: volume courant VRI: vol de réserve inspiratoire VRE: vol de réserve expiratoire VR: vol résiduel CV: capacité vitale CRF: capacité résiduelle fonctionnelle CPT: capacité pulmonaire totale NVR