La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Résistances des matériaux chapitre 01 - heraiz rachid

Présentations similaires


Présentation au sujet: " Résistances des matériaux chapitre 01 - heraiz rachid"— Transcription de la présentation:

1 GCI 210 – Résistances des matériaux Chargé de cours - Olivier Girard Hiver 2009 www.civil.usherbrooke.ca/cours/gci210/

2 Chapitre 0 : Méthode de résolution de problème (6-8) 1. Définir le problème Énumérer les données disponibles Dessiner des figures aidant la compréhension du problème Définir les éléments recherchés Rester calme et dépressif, faire l’étape 2 2. Planifier la solution Effectuer un plan de match ! Définir les étapes qui permettront d’atteindre la solution

3 Chapitre 0 : Méthode de résolution de problème (6-8) 3. Résoudre le problème 3 ingrédients : équilibre, géométrie des déformations et loi de comportement du matériel « traîner » les unités F x L = F / L 2 Limiter le nombre de chiffres significatifs 4. Réviser la solution Ma solution a-t-elle les bonnes unités ? Mes hypothèses sont-elles respectées ? Le signe de la réponse est-il adéquat ? La magnitude de la solution est-elle raisonnable ? Raisonnable ?!

4 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (21++) R x = N : Effort normal à la section, appliqué au centroïde R y = V y : Effort tranchant parallèle à l’axe y, tangentiel à la section R z = V z : Effort tranchant parallèle à l’axe z, tangentiel à la section M x = T : Moment de torsion autour de l’axe normal à la section M y = M fy : Moment de flexion autour de l’axe y M z = M fz : Moment de flexion autour de l’axe z

5 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (21++) Les efforts internes dans une section équilibrent les forces externes appliquées Le calcul des efforts internes s’effectue au moyen de la méthode des sections Les diagrammes des efforts normaux (DEN), des moments de torsion (DMT), des moments fléchissant (DMF) et des efforts tranchants (DET) permettent d’obtenir en tout point les efforts internes

6 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (21++) Exemple

7 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (21++) Exemple – résolution 1. Réactions

8 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (21++) Exemple – résolution 2. coupe 1-1 ΣF x = 0 = N 1 ΣF y = 0 = 36N + V 1 ; donc V 1 = -36N (vers le bas) ΣM A = 0 = -36N*1,5m + M 1 ; donc M 1 = 54Nm (anti-horaire)

9 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (21++) Exemple – résolution 2. coupe 2-2 ΣF x = 0 = N 2 + 40N ; donc N 2 = -40N (vers la gauche) ΣF y = 0 = V 2 + 4N ; donc V 2 = -4N (vers le bas) ΣM B = 0 = 4N*1,5m + M 2 ; donc M 2 = -6Nm (horaire)

10 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (21++) Exemple – résolution 2. coupe 3-3 ΣF x = 0 = N 3 ; donc N 3 = 0 ΣF y = 0 = 36N – 40N + V 3 ; donc V 3 = 4N (vers le haut) ΣM A = 0 = -40N*3m + 4N*x + M 3 ; donc M 3 = (120 – 4x) Nm(anti-horaire) (les équations sont valides pour x > 3m)

11 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (310-322) Notions de DET et DMF Équilibre de l’élément dx (« double coupe ») ΣFy = 0 = -V + pdx + (V+dV) ; donc p = - ( dV / dx ) ΣM gauche = 0 = -M + (M + dM) + (V + dV)dx + (pdx * dx/2) puisque dx est petit, dx 2 est très près de 0 ; donc dM + Vdx = 0

12 Chapitre 1 : Containtes et déformations 1.1 Efforts et forces internes dans une section (310-322) Notions de DET et DMF Les conclusions de l’équilibre de l’élément dx sont : dV = -pdx dM = -Vdx

13 Chapitre 1 : Containtes et déformations DEN, DET, DMF de l’exemple

14 Chapitre 1 : Containtes et déformations 1.2 Définition et composantes des contraintes (21++) 3 D

15 Chapitre 1 : Containtes et déformations 1.2 Définition et composantes des contraintes (21++) 2 D

16 Chapitre 1 : Containtes et déformations 1.3 Définition et composantes des déformations (21++)

17 Chapitre 1 : Containtes et déformations 1.3 Définition et composantes des déformations (21++)

18 Chapitre 1 : Containtes et déformations 1.4 Courbe contrainte-déformation (36-44)

19 Chapitre 1 : Containtes et déformations 1.4 Courbe contrainte-déformation (36-44) Propriétés typiques

20 Chapitre 1 : Containtes et déformations 1.4 Courbe contrainte-déformation (36-44) Simplification !!

21 Chapitre 1 : Containtes et déformations 1.5 Loi de Hooke généralisée (47-81) Uniaxiale

22 Chapitre 1 : Containtes et déformations 1.5 Loi de Hooke généralisée (47-81) Coefficient de Poisson

23 Chapitre 1 : Containtes et déformations 1.5 Loi de Hooke généralisée (47-81) Contrainte admissible Contrainte due aux charges (  charges )< Contrainte admissible (  adm )  adm >  0 / F.S. Calcul aux états limites Pondérer la charge et pondérer la résistance  charges <  0  > 1 et  < 1

24 Chapitre 1 : Containtes et déformations 1.5 Loi de Hooke généralisée (47-81) Matériaux soumis à trois contraintes normales

25 Chapitre 1 : Containtes et déformations 1.5 Loi de Hooke généralisée (47-81)

26 Chapitre 1 : Containtes et déformations 1.5 Loi de Hooke généralisée (47-81) Cas général

27 Chapitre 1 : Containtes et déformations 1.5 Loi de Hooke généralisée (47-81) Exemple


Télécharger ppt " Résistances des matériaux chapitre 01 - heraiz rachid"

Présentations similaires


Annonces Google