La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Basic crystallography Paolo Fornasini Department of Physics University of Trento, Italy.

Présentations similaires


Présentation au sujet: "Basic crystallography Paolo Fornasini Department of Physics University of Trento, Italy."— Transcription de la présentation:

1 Basic crystallography Paolo Fornasini Department of Physics University of Trento, Italy

2 Overview X-rays Crystals Crystal lattices Some relevant crystal structures Crystal planes Reciprocal lattice Crystalline and non-crystalline materials

3  X-rays

4 1895 - Discovery of X-rays Würzburg (Germany) November 8,1895 Wilhelm Konrad Röntgen (1845-1923) Paolo Fornasini Univ. Trento

5 Electromagnetic waves Speed (in vacuum): Paolo Fornasini Univ. Trento Photon energy Frequency Wavelength Electric field Magnetic field 1 Å = 10 -10 m 1 nm = 10 -9 m

6 Wave-vector Paolo Fornasini Univ. Trento Plane wave

7 Paolo Fornasini Univ. Trento Complex notation

8 Electromagnetic spectrum Photon energy Frequency X-rays Wavelength Paolo Fornasini Univ. Trento I R Micro waves E  eV) 10 8 1 10 -12 10 -8 10 -4 10 4  m) 10 -14 10 -6 10 6 10 2 10 -2 10 -10  Hz) 10 22 10 14 10 2 10 6 10 10 18 X UV  ELF Radio waves

9 Interaction of x-rays with matter Paolo Fornasini Univ. Trento Incoming beam (monochromatic) Elastic scattering Inelastic scattering Photo-electrons Auger electrons Fluorescence Photo-electric absorption Scattering Beam attenuation

10 X-RAYS and X-ray techniques Paolo Fornasini Univ. Trento X-rays 10 -12 10 -10 10 -8 10 -6 10 -4 10 -2 1 Å 1  m (m) U.V.I.R. ScatteringSpectroscopy Imaging

11  Crystals

12 Crystals Quartz crystal (SiO 2 ) Macroscopic regularities (e.g. constancy of angles) Classification of crystals Regular packing of microscopic structural units R.J. Haüy (1743-1822) Paolo Fornasini Univ. Trento

13 Atoms and crystals Structural units = atoms Example: NaCl Cubic structure 1 cm 3 m = 2.165 g N = 44.6 x 10 21 atoms HYPOTHESIS: CONCLUSION: Inter-atomic distances Atomic dimensions Atomic masses:Na 38.12 x 10 -24 g Cl 58.85 x 10 -24 g 0.28 nm = 2.8 Å  X-ray wavelengths Paolo Fornasini Univ. Trento

14 X-ray diffraction from crystals Munich, 1912: Max von Laue W. Friedrich & P.Knipping Paolo Fornasini Univ. Trento

15 Crystallography William Henry Bragg (1862-1942) William Lawrence Bragg (1890-1971) Cambridge, 1912/13 Bragg spectrometer Paolo Fornasini Univ. Trento

16 Crystal structure Paolo Fornasini Univ. Trento 1-D 3-D 2-D Atom Molecule Protein Bravais lattice + Basis 1-D 2-D 3-D

17 Bravais lattice + basis Paolo Fornasini Univ. Trento 1-D 2-D 3-D

18  Crystal lattices

19 Translation vectors (2D) Paolo Fornasini Univ. Trento 2-D Arbitrary origin For every lattice point integersprimitive vectors

20 Primitive vectors (2D) Paolo Fornasini Univ. Trento 2-D Different choices of primitive vectors

21 Non-primitive vectors (2D) Paolo Fornasini Univ. Trento Not all pairs are primitive 2-D

22 Primitive vectors (3D) Paolo Fornasini Univ. Trento Different choices of primitive vectors 3-D

23 Primitive unit cells (2D) Paolo Fornasini Univ. Trento 2-D Different choices of primitive unit cells Primitive cell = 1 lattice point

24 Conventional unit cells (2D) Paolo Fornasini Univ. Trento 2-D More than 1 lattice point per unit cell

25 Non-Bravais lattices Paolo Fornasini Univ. Trento 2-D Atoms Un-equivalent sites

26 Bravais lattices Bravais lattice Basis Paolo Fornasini Univ. Trento

27 Classification of cells 2-D 3-D latin greek

28 Surface Bravais lattice Non-primitive unit cell Paolo Fornasini Univ. Trento 2-D

29 3-D Bravais lattices 4 unit cells P = primitive I = body centered F = face centered C = side centered 7 crystal systems 14 Bravais lattices += Paolo Fornasini Univ. Trento 3-D

30 Coordinates Paolo Fornasini Univ. Trento Inside cell: fractional coordinates Lattice points: integer coordinates

31  Some relevant crystal structures

32 Simple cubic lattice Paolo Fornasini Univ. Trento Primitive unit cell (1 lattice point per cell) Coordination number = 6 lattice parameter Bravais lattice 84-Poa=3.35 Å

33 Body centered cubic lattice (bcc) Paolo Fornasini Univ. Trento conventional unit cell (2 lattice points per cell) Bravais lattice lattice parameter Coordination number = 8 24-Cra=2.88 Å 26-Fea=2.87 Å 42-Moa=3.15 Å

34 Face centered cubic lattice (fcc) Paolo Fornasini Univ. Trento conventional unit cell (4 lattice points per cell) Bravais lattice lattice parameter Coordination number = 12 29-Cua=3.61 Å 47-Aga=4.09 Å 79-Aua=4.08 Å

35 Diamond structure conventional unit cell (8 atoms per cell) Paolo Fornasini Univ. Trento Coordination number = 4 Non-Bravais lattice fcc Bravais lattice2-atom basis + 6-Ca=3.57 Å 14-Sia=5.43 Å 32-Gea=5.66 Å

36 Zincblende (sphalerite) structure Paolo Fornasini Univ. Trento conventional unit cell (8 atoms per cell) Cordination number = 4 Non-Bravais lattice fcc Bravais lattice2-atom basis + ZnSa=5.41 Å GaAsa=5.65 Å SiCa=4.35 Å

37 Rock-salt (NaCl) structure Cordination number = 6 Paolo Fornasini Univ. Trento conventional unit cell (8 atoms per cell) NaCla=5.64 Å KBra=6.60 Å CaOa=4.81 Å Non-Bravais lattice fcc Bravais lattice2-atom basis +

38 Simple hexagonal structure 2 lattice parameters Paolo Fornasini Univ. Trento Primitive cellHexagonal symmetry Top view Primitive unit cell (1 lattice point per cell)

39 Hexagonal close packed structure Cordination number = 12 4-Bea=2.29 Å 12-Mga=3.21 Å 48-Cda=2.98 Å Paolo Fornasini Univ. Trento Conventional unit cell (2 atoms per cell) Non-Bravais lattice primitive cell + 2-atom basis

40 Coordination number Paolo Fornasini Univ. Trento N=4 diamond N=6 cubic N=8 bcc N=12 fcc hcp Close packing

41 Close-packing of spheres 1st layer A AAA A AAAA A AAA A AAAA AAAAA 2nd layer BB B B BB B BBBB B B B Paolo Fornasini Univ. Trento 3rd layer A AAA A AAAA A AAA A AAAA AAAAA C CC C C C C C A B AA B C

42 hcp versus fcc A AAA A AAAA A AAA A AAAA AAAAA C CC C C C C C Paolo Fornasini Univ. Trento A B A A B C fcchcp

43  Crystal planes

44 Crystal planes Paolo Fornasini Univ. Trento 2-D

45 Miller indices, 2-D (a) (hk) = (21)(hk) = (11) 2-D Paolo Fornasini Univ. Trento

46 Miller indices, 2-D (b) Paolo Fornasini Univ. Trento

47 Miller indices, 3-D Paolo Fornasini Univ. Trento 3-D

48 Miller indices, cubic lattices Paolo Fornasini Univ. Trento bcc fcc sc

49 Interplanar distance Paolo Fornasini Univ. Trento Cubic lattices Copper, fcc, a=3.61 Å

50 Planes and directions Family of planes Perpendicular direction

51 Equivalent planes and directions Equivalent directions Equivalent planes

52  Reciprocal lattice

53 X-ray diffraction pattern Paolo Fornasini Univ. Trento Direct space 3-dimensional lattice Reciprocal space 2-dimensional projection

54 Basic idea Paolo Fornasini Univ. Trento A) Family of planes  wave-vector B) Wave-vectors  set of points C) Set of points  lattice

55 Reciprocal quantities Paolo Fornasini Univ. Trento frequencytime positionwave-vector Periodic behaviour

56 Harmonics Paolo Fornasini Univ. Trento Periodic behaviour fundamental 2nd harmonic 3rd harmonic time frequency

57 1-D Direct space Reciprocal space Paolo Fornasini Univ. Trento

58 2-D, rectangular lattice (a) Paolo Fornasini Univ. Trento Direct space Reciprocal space

59 2-D, rectangular lattice (b) Reciprocal space Direct space Paolo Fornasini Univ. Trento

60 2-D, rectangular lattice (c) Reciprocal space Direct space Paolo Fornasini Univ. Trento

61 2-D, rectangular lattice (d) Reciprocal space Direct space Paolo Fornasini Univ. Trento

62 2-D, oblique lattice (a) Paolo Fornasini Univ. Trento Reciprocal space Direct space

63 2-D, oblique lattice (b) Paolo Fornasini Univ. Trento Reciprocal space Direct space

64 Cubic lattices (a) Reciprocal space Direct space Paolo Fornasini Univ. Trento

65 Cubic lattices (b) Reciprocal space Direct space Paolo Fornasini Univ. Trento

66 Cubic lattices (c) Reciprocal space Direct space Paolo Fornasini Univ. Trento

67 Primitive vectors: general rule Direct space Reciprocal space Paolo Fornasini Univ. Trento

68 Reciprocal lattice and lattice planes For any family of lattice planes separated by a distance d there are reciprocal lattice vectors perpendicular to the planes, the shortest of which have a length 2  /d. For any reciprocal lattice vector R*, there is a family of lattice planes normal to R* and separated by a distance d, where 2  /d is the length of the shortest reciprocal lattice vector parallel to R*. Paolo Fornasini Univ. Trento

69  Microscopic structure of materials

70 Macro and micro-crystals Monocrystalline silicon,  13 cm Cr, electron microscopy Grain structure Paolo Fornasini Univ. Trento

71 Effects of temperature Paolo Fornasini Univ. Trento Temperature Spread of atomic positionsThermal motion

72 Crystalline and non-crystalline materials Paolo Fornasini Univ. Trento Crystalline solids Non-crystalline systems Long-range orderNo long-range order

73 Cooling rate High T: liquid Low T: solid Slow coolingFast cooling No thermodynamic equilibrium Thermodynamic equilibrium Paolo Fornasini Univ. Trento

74 Radial Distribution Function Paolo Fornasini Univ. Trento r 0 1 g(r) PDF = Pair Distribution Function average density Short-range order

75  Summary Plane waves and wavevector Crystal structure = Bravais lattice + basis Bravais lattices: primitive vectors, unit cells (primitive and conventional), classifications Crystal structures (sc, bcc, fcc, hcp...) Crystal planes and Miller indices Reciprocal lattice Crystalline and non-crystalline materials

76 Dolomite mountains in winter


Télécharger ppt "Basic crystallography Paolo Fornasini Department of Physics University of Trento, Italy."

Présentations similaires


Annonces Google