Télécharger la présentation
1
La cinétique de l’activité microbienne
Maîtrise BPE La cinétique de l’activité microbienne Qu’est ce qui détermine l’intensité du métabolisme vivant en milieu naturel ? Que nous apprend la biologie par rapport à la démarche des ‘ingénieurs’ ?
2
Le modèle de Streeter & Phelps, 1925
L = matière organique biodégradable exprimée en oxygène (DBO5) dL/dt = - k1.L la charge organique est décomposée selon une cinétique d’ordre 1 dO2/dt = - k1.O2 + kr (O2sat-O2) la teneur en oxygène dépend de l’équilibre entre consommation et réaération k1 = 0.04 h-1 kr = 0.02 h-1 rivière débit 20m3/s prof 3m larg 50m Rejet hab non traités O2sat
3
Le modèle de Streeter & Phelps, 1925 (2)
k1 = 0.04 h-1 kr = 0.02 h-1 rivière débit m3/s prof 3m larg 50m Rejet hab hab hab non traités Q = 50 m3/s hab hab hab
4
La Seine en aval de Paris
Achères Achères
5
Mécanismes de l’activité organotrophe
Croissance sur substrat simple (monosaccharide, acide aminé,… L’entrée du substrat organique est l’étape limitante S Processus enzymatique: Cinétique de Michaelis-Menten-Monod k2 S + E SE E + P v3 << v1 et v2 << S v = k3 . SE k1. S . E = k2 . SE or E = - SE d’où k1. S. ( - SE) = k2. SE et SE = k1. S. / (k2 + k1.S) v = k3. . S / ( S + k1/k2 ) ou v = vmax. S / ( S + Ks) si vmax = k3. Ks = k1 / k2 k3 k1 dB/dt = µmax S/(S+Ks) . B
6
Croissance en culture dB/dt = µmax S/(S+Ks) B
Culture batch S dB/dt = µmax S/(S+Ks) B dS/dt = - µmax/Y S/(S+Ks) B B Culture continue dB/dt = µmax S/(S+Ks) B dil. B dS/dt = - µmax/Y S/(S+Ks) B + dil. (So-S) So S B Q V dil = Q/V B S So dilmax = µmax So/(So+Ks) Etat stationnaire: µ = dil S = Ks / ((µmax/dil)-1) B = 1/Y (So – S)
7
Croissance sur substrats naturels
La matière organique naturelle est surtout constituée de macromolécules polymériques: protéines, polysaccharides, lignine, lipides. Sous forme polymérique la matière organique n'est utilisable qu'après hydrolyse exoenzymatique
8
La Bière Certains organismes (ex. les levures) n’ont pas d’exoenzymes:
ils sont tributaires d’un apport de substrats directs monomériques Comment faire fermenter des polysaccharides? maltage et brassage (utilisation des enzymes hydrolytiques du germe de céréale) moisissage (sake: utilisation des capacités hydrolytiques des champignons) ensalivement (Am. latine, bières de maïs: utilisation des amylases salivaires)
10
Modèle HSB H S B dH/dt = App - emax H/(H+Kh). B
CO2 respiration. H hydrol. exoenz. S uptake bact. B mortalité croissance dH/dt = App - emax H/(H+Kh). B dS/dt = emax. H/(H+Kh). B - bmax S/(S+Ks). B dB/dt = Y.bmax . S/(S+Ks). B – kd. B Etat stationnaire: µ = kd S = Ks / ((µmax/kd)-1) B = Y/kd. App
12
Mer du Nord, gC/m2/an
13
Application HSB en rivière polluée
dH/dt = App - emax H/(H+Kh). B dS/dt = emax. H/(H+Kh). B - bmax S/(S+Ks). B dB/dt = bmax/Y . S/(S+Ks). B – kd. B O2 Corg Act organotrophe
14
Application HSB en rivière polluée (2)
dH/dt = App - emax H/(H+Kh). B dS/dt = emax. H/(H+Kh). B - bmax S/(S+Ks). B dB/dt = AppB + bmax/Y . S/(S+Ks). B – kd. B O2 Corg Act organotrophe
15
La Seine en aval de Paris (suite)
Achères
16
La Seine en aval de Paris (suite)
nitrates ammonium Achères
17
Mécanismes de l’activité chemolithotrophe
Exemple de la nitrification CO2 O2 CO2 O2 respiration. NO2- NO3- NH4+ croissance Bnitros Bnitrat mortalité dNH4/dt = App - nitrosmax. NH4/(NH4+KNH4). O2/(O2+KO2nit). Bnitros dBnitros/dt = Ynit.nitrosmax . NH4/(NH4+KNH4). O2/(O2+KO2nit). Bnitros– kd. Bnitros dNO2/dt = nitrosmax. NH4/(NH4+KNH4). O2/(O2+KO2nit). Bnitros - nitratmax. NO2/(NO2+KNO2). O2/(O2+KO2nat). Bnitrat dBnitros/dt = Ynat.nitratmax . NO2/(NO2+KNO2). O2/(O2+KO2nat). Bnitrat– kd. Bnitrat
18
Cinétique de la nitrification (suite)
19
La Seine en aval de Paris (suite)
Achères nitrates ammonium
20
La Seine en aval de Paris (suite)
Achères nitrates ammonium
21
Mécanismes de l’activité phototrophe (production primaire)
CO2 excr photos & resp. S R NH4 ou NO3 croissance F =biomasse fonctionnelle PO4 SiO2 Représentation schématique des processus physiologiques élémentaires impliqués dans la dynamique algale (modèle AQUAPHY, Lancelot et al., J.Mar.Syst. 2: )
22
Photosynthèse réactions claires (génération d’ATP et de pouvoir réducteur cellulaire NAD(P)H) réactions sombres (fixation du CO2) relation de Vollenweider photosynthèse = kmax Chla kmax : taux maximum de photosynthèse : µgC/µgChla.h, selon t°C I : intensité lumineuse (µE/cm²/s) Ik : seuil de saturation lumineuse Chla : teneur en chlorophylle a, mesure de la biomasse algale relation de Platt photosynthèse = kmax (1-exp(- I / kmax)) Chla a: pente initiale de la relation photos-lum, a:indpdt de la t°C (réaction claires limitantes) kmax = fn(t°C) (réactions sombres limitantes) Ik relation de kmax à la température : bien représentée par une sigmoïde : f(t°C)= exp - (t°C-topt)² / dti²
23
Prélèvement de nutriments
La croissance ne s’identifie pas à la photosynthèse : elle doit s'accompagner du prélèvement de nutriments inorganiques: N, P, Si (diatomées) dans les proportions : C:N:P:Si (molaires) de 106:17:1: 20 prélèvement de N = pmax B N : concentration ambiante du nutriment inorganique concerné B : biomasse algale en terme de composants fonctionnels (F) Kn : constante de demi-saturation pmax : vitesse maximale de prélèvement
24
Croissance algale: limitation par la lumière et les nutriments
croissance = µmax S / (S+Ks) . N / (N+Kn) . B N : concentration ambiante du nutriment inorganique le plus limitante (minimum du terme michaelien) ou quota intracellulaire en nutriment le plus limitant S : disponibilité intra cellulaire de précurseurs carbonés (quota cellulaire énergétique) B : biomasse algale en terme de composants fonctionnels (F) Kn : constante de demi-saturation µmax : taux maximum de croissance cellulaire Le pool de S est déterminé par le bilan des processus de photosynthèse, de croissance, de respiration, de synthèse et de catabolisme des réserves carbonées (R). En présence d’un excédent de S, des substrats carbonés sont excrétés . respiration: maintenance et coût énérgétique de la croissance excrétion: pertes passives de monomères issus de la photosynthèse processus actif
25
L’intensité de la lumière et la disponibilité en nutriments déterminent ainsi la composition cellulaire (F,S,R et rapports C/N, C/Chla)
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.