La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Visioconférence, organisée par le CCSTVN, l'Institut Pasteur et l'AUF

Présentations similaires


Présentation au sujet: "Visioconférence, organisée par le CCSTVN, l'Institut Pasteur et l'AUF"— Transcription de la présentation:

1 De la grippe au SRAS, la plasticité génétique virale est facteur d'émergence
Visioconférence, organisée par le CCSTVN, l'Institut Pasteur et l'AUF mardi 30 septembre 2008 AUF (4 place de la Sorbonne)

2 Émergences virales et évolution des populations et des activités humaines
Avant l’apparition de l’homme Domestication des petits et des grands ruminants Homo sapiens Temps historiques Peintures de Lascaux Invention de l’écriture Premiers hommes Homo genus ans ans ans

3 Virus et maladies virales émergentes de 1973 à 2003
Modifié; d’après la source:

4 Facteurs impliqués dans l’émergence possible de virus chez l’homme
virologiques Facteurs écologiques Facteurs démographiques Facteurs zootechniques Émergence possible

5 La grippe et ses virus

6 Facteurs impliqués dans l’émergence possible de virus chez l’homme
Facteurs virologiques Plasticité génétique: nature des polymérases (Virus à ARN) et des génomes viraux Diversité Spectre d’hôtes Taille des populations virales possibles Taille des populations d’hôtes

7 Facteurs impliqués dans l’émergence possible de virus chez l’homme
Facteurs virologiques Spectre d’hôtes

8 Transmissions inter-espèces des virus de grippe A

9 Facteurs impliqués dans l’émergence possible de virus chez l’homme
Facteurs virologiques Diversité

10 Facteurs impliqués dans l’émergence possible de virus chez l’homme
Facteurs virologiques Plasticité génétique: les mécanismes mutations/insertions/délétions Recombinaisons Réassortiments Coronavirus Virus grippaux

11 Evolution de l’hémagglutinine des virus humains A(H3N2) collectées d’octobre 1985 à septembre 1996
FIG. 2. Rate of evolution of human influenza HA1. The y axis shows the number of replacement substitutions between the root and a tip sequence. The x axis shows the time of isolation of the virus to the month where known (206 sequences), or to the month of June if the month was not known (48 sequences). Each of the 254 sequences is represented in the graph but, if there were more than one isolate for the same month and year, their distances were averaged. A least squares fit to the data gives a slope of 3.20 replacement substitutionsyyear. The two tubes show an apparent increase in the rate of replacement substitutions about However, we cannot rule out the possibility that this is a consequence of a more intensive sampling of the population in the last four years. FIG. 1. Overall structure of the most parsimonious trees. The thick line running from the lower left (p 5 root) to the upper right (open square) is called the trunk and represents the successful H3N2 lineage. The vertical lines indicate the range of isolates from the flu years (October 1 to September 30). Long term trends in the evolution of H(3) HA1 human influenza type A; WALTER M. FITCH, ROBIN M. BUSH, CATHERINE A. BENDER, AND NANCY J. COX, Proc. Natl. Acad. Sci. USA, Vol. 94, pp. 7712–7718, July 1997

12 Représentation schématique du site récepteur des virus grippaux et structures reconnues par les virus grippaux PB2 PB1 PA HA NP NA M NS α 2,6 PB2 PB1 PA HA NP NA M NS α 2,3 Leurs relations et positions avec la poche de résidus conservés identifiés dans le site de liaison au récepteur sont montrées (Wilson et al., Nature, 1981)

13 Mécanisme hypothétique de l’émergence des sous-types de virus grippaux humains A(H2N2) & A(H3N2)
A(H1N1) Virus PB1 HA NA PB1 HA A(H3N2) Virus Grippe de Hong Kong (1968) A(H2N2) Virus Grippe asiatique (1957)

14 Lieu géographique d’origine
Les pandémies grippales Année Sous-type Morts en millions Lieu géographique d’origine 1889 H2N2 6 Europe 1898 H3N2 0,5 1918 H1N1 40 1957 4 Asie 1968 2 1977 ? Asie (laboratoire) Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology, Rev Med. Virol., J. S. Oxford*

15 Grippe A(H5N1) en Asie depuis 2003/2004

16 Pays touchés par l’épizootie d’influenza aviaire hautement pathogène H5N1 à génotype Z prédominant
Au total depuis le début: 61 pays touchés dont 30 ont subi des foyers en 2007 en Asie, Europe et Afrique, dont 5 pour la première fois: Bangladesh, Bénin, Ghana, Arabie Saoudite et Togo. A l’exception de quelques foyers chez les oiseaux sauvages (surtout à Hong Kong et en Europe), la plupart des foyers ont touché des espèces domestiques: poules, dindes, oies, canards et cailles. Evolution in the number of outbreaks between 2006 and 2007 Pays d’endémie: en Asie (Indonésie, Bangladesh, Pakistan, Chine et Afghanistan) et en Afrique (Égypte et probablement Nigeria) Source: FAO

17 Les génotypes de virus grippaux A(H5N1) réassortants en Asie orientale
Les huits segments génomiques sont de haut en bas: PB2, PB1, PA, HA, NP, NA, M et NS. Chaque couleur représente un lignage (le rouge indique Gs/Gd/1/96). Les génotypes (indiqués par des lettres) sont définis sur la base de la phylogénie du gène. Les génotypes A, B et C résultent du réassortiment de Gs/Gd/1/96 et de un ou plus vrus d’oiseau aquatique one or more aquatic avian viruses. Le génotype D a été créé quand le gène NP du génotype C a été remplacé par celui de virus proches de Dk/HK/Y280/97(H9N2). Le génotype E a été créé quand le gène NP du génotype C a été remplacé par un gène d’un autre virus d’oiseau. Des réassortiments supplémentaires du génotype E avec d’autre virus d’oiseaux aquatiques ont donné naissance aux génotypes X 0–X 3, qui se distinguent entre eux par l’orifgne des segments: PB2, NP et M. Des réassortiments supplémentaires des génotypes A ou B avec d’autres virus d’oiseaux aquatic ont permis la création des génotypes V, Y, Z et Z +. Il est aussi possible que le Gen. V résulte du réassortiment du génotype Z avec de’autres virus aquatiques sauvages Source:: Li K.S. et al, Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia, 2004, Nature, vol 430, p

18 Evolution génétique virale
Source: Evolution of H5N1 Avian InfluenzaViruses in Asia WHO Global Influenza Program Surveillance NetworK, Emerging Infectious Diseases Vol. 11, No. 10, 2005 Source: FAO

19 L’influenza (La grippe) aviaire aujourd’hui: problème de santé animale avec des répercussions socio-économiques Réservoir: population d’hôtes permettant le maintien du virus en son sein Oiseaux sauvages Environ. Inter- face Oiseaux domestiques Populations Humaines exposées Impact socio-économique Santé animale Phénomène zoonotique mineur

20 Cas humains par pays et par année au 11 mars 2008
2003 2004 2005 2006 2007 2008 Total cases deaths Azerbaïdjan 8 5 Cambodge 4 2 1 7 China 13 3 30 20 Djibouti Egypte 18 10 25 9 47 Indonésie 55 45 42 37 12 129 105 Iraq Laos Myanmar Nigeria Pakistan Thaïlande 17 Turquie Viet Nam 29 61 19 51 46 32 98 43 115 79 86 59 22 371 235 Source: OMS (seuls les cas confirmés au laboratoires sont rapportés ici)

21 Risque de réassortiment
Si le réassortiment arrive dans tous les cas de co-infection, alors la probabilité de réassortiment pour n cas humains d’infection par la grippe aviaire est de: 1-(1-0,0012)n Pour un risque de réassortiment de 50%, n = 600 Pour un risque de réassortiment de 5%, n = 45 Lors de l’écriture de l’article n=34, soit un risque de 4% Au 05/02/2008 n=359; r=35% Public Health Risk from the Avian H5N1 Influenza Epidemic Neil M. Ferguson, Christophe Fraser, Christl A. Donnelly, Azra C. Ghani, Roy M. Anderson 14 MAY 2004 VOL 304 SCIENCE

22 Surveillance de la taille des «clusters » des cas groupés
Ici, 2 cas de transmission inter-humaine possible: R0=0,06 Threshold size of the largest cluster expected by chance for a range of levels of human-to-human transmission, as quantified by the proportion of avian-to-human cases generating secondary cases (approximate R0 values are also shown). Anomalous behavior might be suspected if a cluster exceeds this threshold size. Note how the expected maximum cluster size increases cases accumulate. Public Health Risk from the Avian H5N1 Influenza Epidemic Neil M. Ferguson, Christophe Fraser, Christl A. Donnelly, Azra C. Ghani, Roy M. Anderson 14 MAY 2004 VOL 304 SCIENCE

23 Diversité génétique virale
La taille des populations virales est dépendante de celle des populations d’hôtes (animaux et hommes) et du territoire tissulaire dans lequel le virus peut se multiplier. Les deux causes principales de la diversité génétique virale sont: les mutations (y compris les échanges génétiques) et la taille des populations. Quand les deux augmentent, le spectre des propriétés disponibles pour les descendants viraux en font autant.

24 Démographie mondiale: taille des populations d’animaux domestiques et d’hommes/ interfaces
Démographie humaine Chine: 1,3.109 (incl 66.7% rural pop.) Vietnam: Thaïlande: Pays-Bas: Démographie des volailles Pays-Bas : Chine: (source: FAO) 1980: 1.11*109 1990: 2.42*109 2000: 4.30*109 2002: 4.89*109 Lumières vues de l’espace

25 Conclusion Influenza aviaire = problème majeur de santé animale vs Grippe aviaire = zoonose mineure à ce jour Risque lié à la circulation chez l’animal Collaboration interdisciplinaire: OIE, FAO et OMS Risque réel mais non avéré Intérêt de la lutte aux lieux (possibles) d’émergence Coopération internationale: OMS (problèmes d’échanges de souches: géopolitique, propriété intellectuelle …..) Plan de lutte nationaux pour Éviter la pandémie Retarder la pandémie Diminuer l’impact sur la population Vaccination Quel vaccin, quel schéma (« prime-boost »?) à partir de quelle phase faire des stocks, vacciner etc….) Antiviraux Résistance? (leçons données par les virus A(H1N1) humains saisonniers actuels en Europe?)

26 De la grippe ……. ……….. au SRAS

27 Genèse et phases des épidémies
Introduction Diffusion Amplification Régression Milieu indemne Progression géométrique Du nombre de cas Foyers secondaires Réservoir animal/ +/- espèce intermédiaire Foyers secondaires Index cas Individus sensibles (Re-) Introduction D’un virus nouveau Cas sporadiques Foyers secondaires Clusters de cas sporadiques Foyers locaux primaires Au sein d’une zone géographique D’une zone à une autre par contiguité Diffusion à distance: avions, bateaux ……

28 Phase d’introduction Province de Canton : pour la période du 16 novembre 2002 au 9 février 2003: 305 cas de syndromes respiratoires aigus dont cinq étaient décédés. En date du 12 février 2003, aucun virus grippal n'avait été isolé ou seulement détecté de ces 305 cas rapportés dans 6 municipalités du Guangdong: Foshan, Guangzhou, Heyuan, Jiangmen, Shenzhen A la mi-février 2003, aucun nouveau cas n'était plus officiellement observé à Foshan, Heyuan et Zhongshan et le nombre de nouveaux cas étaient en diminution à Guangzhou, Jiangmen et Shenzhen. Source: organisation modiale de la santé, complété

29 Les trois étapes de l’épidémie de pneumopathie atypique avant sa « mondialisation »
Émergence du virus du SRAS chez l’homme Premiers « supercontaminateurs » The Chinese SARS Molecular Epidemiology Consortium, Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in China SCIENCE VOL MARCH 2004, p

30 Découverte et description d’un nouveau virus
The Chinese SARS Molecular Epidemiology Consortium, Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in China SCIENCE VOL MARCH 2004, p

31 Evolution de la composition du génome viral isolé ou détecté chez les patients au cours de l’épidémie de SRAS en 2002/2003 Phase précoce Phase moyenne Phase tardive Souche référence Animaux Shenzhen The Chinese SARS Molecular Epidemiology Consortium, Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in China SCIENCE VOL MARCH 2004, p Un patient de la même salle d’hôpital possédait des virus des deux génotypes

32 Phase de diffusion internationale
Cas M Bangkok Cas P Cas C PARIS Cas K Cas B MMWR Weekly March 28, 2003 / 52(12); , complété

33 Évolution du génome viral
Le taux de mutation neutre pour le CoV du SRAS pendant l’épidémie a été: presque constant Estimé à Exp6 (2, ) nt–1 jour–1. Ceci est une valeur comparable à celles trouvées pour les virus à ARN connus et est le tiers de celle estimée pour les virus de l’immunodéficience humaine (VIH). Au contraire, le taux de mutations non synonymes a été: variable selon les trois phases de l’épidémie Une analyse par paires du ratio Ka/Ks pour les génotypes représentés dans chaque groupe montre que le ratio Ka/Ks moyen était plus grand pendant la phase précoce que pendant la phase intermédiaire dont le ration Ka/Ks moyen était supérieur à celui de la phase tardive, lui même inférieur à 1. Ceci suggère que des pressions d’adaptation se sont opérées sur le génome du CoV du SRAS qui s’est ensuite stabilisé en donnant naissance à une génotype dominant. The Chinese SARS Molecular Epidemiology Consortium, Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in China SCIENCE VOL MARCH 2004, p

34 Évolution du génome viral
Konrad Stadler et al., SARS — Beginning to understand a new virus, NATURE REVIEWS | MICROBIOLOGY Volume 1 | Ddecmber 2003, p Les domaines prédits de la protéine S impliqués dans la reconnaissance du récepteur sur l’hôte et dans l’internalisation sont les domaines qui ont subi le plus de changement d’acides aminés. Entre les séquences des CoV des civettes palmistes (SZ3 or SZ16) et chacune des CoV humain, le ratio des changements nonsynonymes vs synonymes (Ka/Ks) pour le gène S était toujours plus grand que 1, indiquant une pression de sélection positive. Les données indiquent que le gène S a subi des pressions de sélection positives plus fortes au début puis des sélections de “purification” avant de se stabiliser. The Chinese SARS Molecular Epidemiology Consortium, Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in China SCIENCE VOL MARCH 2004, p

35 Évolution du génome viral: date de l’introduction du virus chez l’homme
Estimation de la date de l’ancêtre commun le plus récdent des souches virales disponibles: Sur la base du taux de mutation neutres cette date peut être estimée vers la mi novembre 2002 (IC 95% : début juin 2002 – fin décembre 2002). Ce résultat est cohérent avec la date de début de maladie le 16 novembre 2002 pour le cas index le plus précoce connu (Foshan) Ce résultat conforte les résultats obtenus sur les génotypes qui suggèrent que les génotypes des phases précoce, moyenne et tardive représentent différent stades de l’évolution virale du même lignage. Il y a une remarquable corrélation entre les clusters trouvés sur les bases des analyses moléculaires et les groupements épidémiologiques des génotypes au travers de l’épidémie. En retraçant l’évolution moléculaire du CoV du SRAS en Chine, il semble que l’épidémie a commencé et s’est terminée par des évènements de délétion, accompagnées par une décélération des mutations non synonymes et par un génotype qui a prédominé pendant toute la phase tardive de l’épidémie. The Chinese SARS Molecular Epidemiology Consortium, Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in China SCIENCE VOL MARCH 2004, p

36 Origine du Coronavirus du SRAS
Résultats des recherches virologiques et sérologiques pratiquées sur des animaux prélevés sur le marché de détail d’animaux vivants de Shenzhen (Y. Guan et al., 2003) Animaux: N=25 HPC, Civette palmiste de l’Himalaya(Paguma larvata) -> 6 (24%) – 6 / 100% / 86%; HB, Blaireau à collier (Arctonyx collaris) -> 3 (12%) – 1/ 33% /14%; RD, Chien viverrin (Nyctereutes procyonoides) -> 1 (4%) - 0; B, Castor (Castor fiber) -> 3 (12%) - 0; CM, Muntjac chinois (Muntiacus reevesi) -> 2 (8%) - 0; DC, Chat domestique (Felis catus) -> 4 (16%) - 0; CH, Lièvre chinois (Lepus sinensis) -> 4 (16%) - 0; CFB, Blaireau furet chinois (Melogale moschata) -> 2 (8%) - 0 Y. Guan et al., Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China, / 4 September 2003 / Page 1/ /science

37 Origine du coronavirus du SARS
Séquençage du génome viral des coronavirus apparentés au SARS CoV détectés chez l’homme et l’animal et comparaisons (Y. Guan et al., 2003) Différence de 18 Nt sur tout le génome Différence de 43 à 57 Nt sur tout le génome Différence de 14 Nt sur tout le génome Y. Guan et al., Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China, / 4 September 2003 / Page 1/ /science

38 Origine du coronavirus du SARS
? Pas d’anticorps avant SARS Anticorps chez marchands d’animaux sauvages sur les marchés de Canton (40%), chez abatteurs de ces animaux (20%). Peu ou pas chez vendeurs de fruits et légumes (5%) ou chez autres (0%°) Y. Guan et al., Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China, / 4 September 2003 / Page 1/ /science

39 Nouvelle émergence fin 2003?
Ville de Canton (Guangzhou , Province du Guangdong, Chine): 20 décembre 2003, hospitalisation d’un patient index tombé malade le 16 du mois. Prélèvement le 22/12 Détection du CoV du SRAS et séquençage du gène codant la protéine S Analyse phylogénique en comparaison avec les séquences de virus humains et animaux connus y compris des virus de civet détectés/isolés fin 2003: le virus de fin 2003 est plus proche des virus de civette que de n’importe quel virus humain connu jusque là et détectés au cours de l’épidémie précédente. Ce nouveau cas et le virus associé offre un argument supplémentaire pour une origine animale du coronavirus du SRAS.

40 Phylogenetic analysis of chymotrypsin-like protease (3CLpro), RNA-dependent RNA polymerase (Pol), spike (S), and nucleocapsid (N) of bat-SARS-CoV Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats Bootstrap values were calculated from 1,000 trees. Included for analysis were 306, 932, 1242, and 421 amino acid positions in 3CLpro, Pol, S, and N, respectively. The scale bar indicates the estimated number of substitutions per 10 amino acids. PEDV, porcine epidemic PNAS, 2005 Susanna K. P. Lau*†‡§, Patrick C. Y. Woo*†‡§, Kenneth S. M. Li*, Yi Huang*, Hoi-Wah Tsoi*, Beatrice H. L. Wong*, Samson S. Y. Wong*†‡, Suet-Yi Leung¶, Kwok-Hung Chan*, and Kwok-Yung Yuen*†‡§

41 Evolutionary Insights into the Ecology of Coronaviruses
J. Virol, D. Vijaykrishna,† G. J. D. Smith,† J. X. Zhang, J. S. M. Peiris, H. Chen, and Y. Guan*

42 Evolutionary Insights into the Ecology of Coronaviruses
J. Virol, D. Vijaykrishna,† G. J. D. Smith,† J. X. Zhang, J. S. M. Peiris, H. Chen, and Y. Guan*


Télécharger ppt "Visioconférence, organisée par le CCSTVN, l'Institut Pasteur et l'AUF"

Présentations similaires


Annonces Google