Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parSimone Bossé Modifié depuis plus de 6 années
1
Soutenance de Mémoire de Master En vue de l’obtention du diplôme de master En Physique des fluides et des transferts THEME Etude des champs dynamique et thermique dans les tuyauteries en régime turbulent Présenté par: Tarek Krid Encadré par: Mr. Lotfi Snoussi
2
Plan de travail Introduction Problématique
Logiciel de simulation numérique Modèles physique et maillage Résultats et discussions Conclusion
3
Introduction Dans ce travail, nous allons modéliser un coude comportant la jonction-T(SUPER NIMBUS et FLUO). Les géométrie sont réalisées pour étudier l’influence de la stratification thermique. ANSYS-FLUENT a été utilisé pour réaliser des simulations stationnaires avec des modèles de turbulence conventionnels.
4
Schéma de coude en jonction-T
Introduction Schéma de coude en jonction-T
5
Problématique Formulations Mathématiques: Equation de continuité:
Equation Navier Stokes: Equation d’énergie:
6
Problématique Modèle k–epsilon:
Equation d’énergie cinétique turbulente « k »: Equation du taux de dissipation d’énergie cinétique turbulente « ɛ »:
7
Logiciel de simulation numérique
8
Logiciel de simulation numérique
L’ANSYS est un logiciel à usage général, utilisé pour construire des géométries, des maillages et aussi pour faire les simulation numérique basée sur les deux premières étapes et pour cela on utilise dans notre cas le code FLUENT.
9
Logiciel de simulation numérique
Méthodes Numérique: Cette méthode se base sur la modélisation en volume finies de la structure.
10
Logiciel de simulation numérique
Matériaux utilisées Le fluide principale dans notre expérience est l’eau. Pour la simulation par l’ANSYS, on se basant sur l’Aluminium comme le solide de la paroi du tuyauterie à étudier.
11
Logiciel de simulation numérique
Démarche de la Modélisation
12
Modèles physique et maillage
Dans les exemples d’étude nous avons utilisé le même conditions initiales, conditions aux limites et le même maillage. Nous avons changé uniquement la position, le diamètre d’entée d’eau froide et la vitesse d’entrée donc en jouant sur la géométrie de la tuyauterie et le débit d’entée d’eau froide. Modèles physique et maillage
13
Modèles physique et maillage
Géométrie Super Nimbus C’est un coude en jonction-T, dans la suite, on applique des simulations numériques sur cette pièce avec l’ANSYS comme un logiciel de simulation. Si on applique des changements sur le niveau de position et de diamètre d’entrée d’eau froide résulte 6 géométries:
14
Modèles physique et maillage
Géométrie Super Nimbus: d’entrée d’eau froide Df=0.2m (1) (2) (3)
15
Modèles physique et maillage
Géométrie Super Nimbus: d’entrée d’eau froide Df=0.4m (4) (5) (6)
16
Modèles physique et maillage
Géométrie FLUO C’est une géométrie crée pour faire l’application de la maillage avec des précisions nécessaires pour notre travaille.
17
Modèles physique et maillage
Géométrie FLUO
18
Modèles physique et maillage
Maillage de la Géométrie Super Nimbus Df=0,2m
19
Modèles physique et maillage
Maillage de la Géométrie Super Nimbus Df=0,4m
20
Modèles physique et maillage
Maillage de la Géométrie FLUO
21
Résultats et discussions
Influence de la position de la jonction-T sous l’effet de différentes vitesses sur le champ dynamique et thermique:
22
Résultats et discussions
x=0 x=X x=2X Z=0 Dans la figures (III.1), on remarque une réelle stratification thermique est bien visible Figure1: 2D
23
Résultats et discussions
x=0 x=X x=2X 3D Les profils 3D vérifient l’ existence du phénomène pour les 3 cas avec une déférence de dégrée de la stratification. Figure2: 3D
24
Résultats et discussions
x=0 x=X x=2X Z=0 Pour la figure (III.2), la distribution de la vitesse montre une stabilité de la stratification pour les trois cas de test. Figure4: 2D
25
Résultats et discussions
x=0 x=X x=2X 3D Les profils 3D vérifient l’ existence du phénomène pour les 3 cas avec une déférence de dégrée de la stratification. Figure5: 3D
26
Résultats et discussions
x=0 x=X x=2X 3D Les profils 3D vérifient l’ existence du phénomène pour les 3 cas avec une déférence de dégrée de la stratification. Figure8: 3D
27
Résultats et discussions
x=0 x=X x=2X Z=0 Pour la figure (III.4), la distribution de la vitesse montre une stabilité de la stratification pour x=X et x=2X, on a une homogénéité de la vitesse pour x=0 donc la stratification est rapidement se dissiper. Figure10: 2D
28
Résultats et discussions
x=0 x=X x=2X 3D Pour la figure (III.4), la distribution de la vitesse montre une stabilité de la stratification pour x=X et x=2X, on a une homogénéité de la vitesse pour x=0 donc la stratification est rapidement se dissiper. Figure11: 3D
29
Résultats et discussions
x=0 x=X x=2X Z=0 La stratification apparaitre dans la figure (III.5) pour les cas de x=X et x=2X. Figure13: 2D
30
Résultats et discussions
x=0 x=X x=2X 3D La stratification apparaitre dans la figure (III.5) pour les cas de x=X et x=2X. Figure14: 3D
31
Résultats et discussions
x=0 x=X x=2X Z=0 Les profils de la vitesse dans la figure (III.6), montrent que la stratification existe dans les cas de x=X et x=2X et une homogénéité de la vitesse pour x=0. Figure16: 2D
32
Résultats et discussions
x=0 x=X x=2X 3D Les profils de la vitesse dans la figure (III.6), montrent que la stratification existe dans les cas de x=X et x=2X et une homogénéité de la vitesse pour x=0. Figure17: 3D
33
Résultats et discussions
Influence de la largeur de la jonction-T sous l’effet de différentes vitesses sur le champ dynamique et thermique
34
Résultats et discussions
x=0 x=X x=2X Z=0 La stratification est apparaitre dans la figure (III.7) pour les cas de x=X et x=2X. Figure19: 2D
35
Résultats et discussions
x=0 x=X x=2X 3D La stratification est apparaitre dans la figure (III.7) pour les cas de x=X et x=2X. Figure20: 3D
36
Résultats et discussions
x=0 x=X x=2X Z=0 Les profils de la vitesse dans la figure (III.8), montrent que la stratification n’existe pas dans ces cas de test. Figure22: 2D
37
Résultats et discussions
x=0 x=X x=2X 3D Les profils de la vitesse dans la figure (III.8), montrent que la stratification n’existe pas dans ces cas de test. Figure23: 3D
38
Résultats et discussions
x=0 x=X x=2X Z=0 La stratification est discrète dans la figure (III.9) pour les cas de x=X et x=2X et une homogénéité de la température pour x=0 d’ où pas de stratification. Figure25: 2D
39
Résultats et discussions
x=0 x=X x=2X 3D La stratification est discrète dans la figure (III.9) pour les cas de x=X et x=2X et une homogénéité de la température pour x=0 d’ où pas de stratification. Figure26: 3D
40
Résultats et discussions
x=0 x=X x=2X Z=0 La stabilisée profils dynamique dans la figure (III.10) pour x=X et x=2X, montrent que la stratification thermique existe pour ces deux cas par contre une seule vitesse dominante dans le cas x=0 donc l’absence du phénomène. Figure29: 2D
41
Résultats et discussions
x=0 x=X x=2X 3D La stabilisée profils dynamique dans la figure (III.10) pour x=X et x=2X, montrent que la stratification thermique existe pour ces deux cas par contre une seule vitesse dominante dans le cas x=0 donc l’absence du phénomène. Figure30: 3D
42
Résultats et discussions
x=0 x=X x=2X Z=0 On remarque bien l’absence de la stratification thermique dans la figure(III.11). Figure32: 2D
43
Résultats et discussions
x=0 x=X x=2X 3D On remarque bien l’absence de la stratification thermique dans la figure(III.11). Figure33: 3D
44
Résultats et discussions
x=0 x=X x=2X Z=0 Dans la figure (III.12), les trois cas vérifient une vitesse dominante donc pas de distributions dynamique dans ces cas d’où l’absence du stratification thermique pour les trois tests. Figure36: 2D
45
Résultats et discussions
x=0 x=X x=2X 3D Dans la figure (III.12), les trois cas vérifient une vitesse dominante donc pas de distributions dynamique dans ces cas d’où l’absence du stratification thermique pour les trois tests. Figure37: 3D
46
Résultats et discussions
Influence de la vitesse sur le champ dynamique et thermique:
47
Résultats et discussions
x=0 x=X x=2X Z=0 On remarque bien l’ existence de la stratification thermique dans le cas de Vf=0.625m/s et Vf=2m/s par contre pour Vf=10m/s on a l’absence du phénomène. Figure39: 2D
48
Résultats et discussions
x=0 x=X x=2X 3D On remarque bien l’ existence de la stratification thermique dans le cas de Vf=0.625m/s et Vf=2m/s par contre pour Vf=10m/s on a l’absence du phénomène. Figure40: 3D
49
Résultats et discussions
x=0 x=X x=2X Z=0 Les profils de la vitesse montrent les déférences des vitesses sous forme des blocks l’ un sur l’ autre, donc une stratification dynamique dans les cas de Vf=0.625m/s et Vf=2m/s par contre une seule vitesse dominante pour Vf=10m/s Figure42: 2D
50
Résultats et discussions
x=0 x=X x=2X 3D Les profils de la vitesse montrent les déférences des vitesses sous forme des blocks l’ un sur l’ autre, donc une stratification dynamique dans les cas de Vf=0.625m/s et Vf=2m/s par contre une seule vitesse dominante pour Vf=10m/s Figure43: 3D
51
Conclusion et perspectivistes
Le travail présenté souligne l'intérêt d'une démarche associant l'approche numérique et présente les outils d'intérêt général élaborés dans ce cadre. L’outil de simulation numérique fluent a été notre moyen pour la compréhension des différents phénomènes manifestés à travers les différentes géométries étudiées. Les résultats obtenus portent sur des champs et des profils de vitesse et de température dans une géométrie coude avec jonction-T en régime turbulente sous des conditions aux limites. Les profils de la température et de la vitesse du fluide prouvent un couplage entre eux en fonctions des différents paramètres opératoires et des conditions aux limites.
52
Conclusion et perspectivistes
Les résultats montrent qu’une forte stratification est obtenue pour une petite pente caractéristique ou bien une thermocline très fine, la stratification thermique est nettement visible pour les profils bidimensionnelle et tridimensionnelle. La variation de vitesse influe directement sur la stratification thermique. La largeur de la jonction-T a une importance primordiale vue, ainsi dans le cas de la 2éme position de la jonction-T , on note l’apparition d’un gradient de température. Une bonne stratification remarqué pour le cas d’un débit faible à la position x=0, donc la stratification thermique est inversement proportionnelle au vitesse du fluide.
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.