La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Pour aller directement à la reprise du cours

Présentations similaires


Présentation au sujet: "Pour aller directement à la reprise du cours"— Transcription de la présentation:

1 Pour aller directement à la reprise du cours

2 Interprétation des données d’enquête
Exercices 5.2, p. 2 (suite)

3 Interprétation des données d’enquête
Influence du degré de certitude sur la marge et la fourchette Tableau récapitulatif Conclusions : plus le degré de certi. est grand, plus la marge est forte, ceteris paribus explication : plus le degré de certitude est grand, plus « k » est grand « k » set de multiplicateur plus un multiplicateur est grand, plus le résultat est grand, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,3 1.000 95% ??? B 99%

4 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : si 2 « p » sont complémentaires, les marges sont identiques explication : si p = 0,1  q = 1-0,1 = 0,9 et p*q = 0,1*0,9 si p = 0,9  q = 1-0,9 = 0,1 et p*q = 0,9*0,1 0,1*0,9 = 0,9*0,1 = 0,09 toujours ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,1 1.000 95% ??? B 0,9

5 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : plus « p » s’écarte de 0,5, plus la marge est forte, ceteris paribus explication : le produit p*q est maximal pour p = 0,5 plus p*q est grand, plus le résultat est grand, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,9 1.000 95% ??? B 0,5 C 0,3 D 0,1 Au travail : à votre rythme et à votre choix ! Rappel : fourchette moins importante (simples additions et soustractions).

6 Reprise du cours (29-09-2015) Le raisonnement :
enquête  échantillon  hasard le hasard : soit positif, soit négatif après l’enquête, impossible de savoir si + ou -  prudence dans l’interprétation incertitude  95 chances sur 100 Imprécision  fourchette Les formules pour matérialiser l’incertitude et l’imprécision : fourchette : p ± marge L’interprétation : le p de la population à 95 chances sur 100, dans la fourchette (à 5 chances sur 100, hors fourchette)

7 Reprise du cours (29-09-2015) Le raisonnement :
enquête  échantillon  hasard le hasard : soit positif, soit négatif après l’enquête, impossible de savoir si + ou -  prudence dans l’interprétation incertitude  95 chances sur 100 imprécision  fourchette Les formules pour matérialiser l’incertitude et l’imprécision : fourchette : p ± marge L’interprétation : le p de la population à 95 chances sur 100, dans la fourchette (à 5 chances sur 100, hors fourchette)

8 Reprise du cours (29-09-2015) Le raisonnement :
enquête  échantillon  hasard le hasard : soit positif, soit négatif après l’enquête, impossible de savoir si + ou -  prudence dans l’interprétation incertitude  95 chances sur 100 imprécision  fourchette Les formules pour matérialiser l’incertitude et l’imprécision : fourchette : p ± marge L’interprétation : le p de la population à 95 chances sur 100, dans la fourchette (à 5 chances sur 100, hors fourchette)

9 Reprise du cours (29-09-2015) Le raisonnement :
enquête  échantillon  hasard le hasard : soit positif, soit négatif après l’enquête, impossible de savoir si + ou -  prudence dans l’interprétation incertitude  95 chances sur 100 imprécision  fourchette Les formules pour matérialiser l’incertitude et l’imprécision : fourchette : p ± marge L’interprétation : le « p » dans la population (des ) à 95 chances sur 100, dans la fourchette (à 5 chances sur 100, hors fourchette)

10 Reprise du cours ( ) Les formules pour matérialiser l’incertitude et l’imprécision : Exemple si = 1.253; p = 0,187 et k = 1,96 remarques : le « ± » se place devant le résultat et pas devant le « k », comme fait par erreur à différents endroits justification de « ± » devant la valeur de la marge : (p*q)/n est positif la racine carrée d’un nombre positif peut être : positive négative  la racine carrée de 9 vaut à la fois : 3 car 3 * 3 = 9 ̶ 3 car ̶ 3 * ̶ 3 = 9 

11 Reprise du cours ( ) Les formules pour matérialiser l’incertitude et l’imprécision : Exemple si = 1.253; p = 0,187 et k = 1,96 remarques : le « ± » se place devant le résultat et pas devant le « k », comme fait par erreur à différents endroits justification de « ± » devant la valeur de la marge : (p*q)/n est positif la racine carrée d’un nombre positif peut être : positive négative  la racine carrée de 9 vaut à la fois : 3 car 3 * 3 = 9 ̶ 3 car ̶ 3 * ̶ 3 = 9 

12 Reprise du cours ( ) Les formules pour matérialiser l’incertitude et l’imprécision : Exemple si = 1.253; p = 0,187 et k = 1,96 remarques : le « ± » se place devant le résultat et pas devant le « k », comme fait par erreur à différents endroits justification de « ± » devant la valeur de la marge : (p*q)/n est positif la racine carrée d’un nombre positif peut être : positive négative  la racine carrée de 9 vaut à la fois : 3 car 3 * 3 = 9 ̶ 3 car ̶ 3 * ̶ 3 = 9 

13 Reprise du cours ( ) Les formules pour matérialiser l’incertitude et l’imprécision : Exemple si = 1.253; p = 0,187 et k = 1,96 remarques : le « ± » se place devant le résultat et pas devant le « k », comme fait par erreur à différents endroits justification de « ± » devant la valeur de la marge : (p*q)/n est positif la racine carrée d’un nombre positif peut être : positive négative  la racine carrée de 9 vaut à la fois : 3 car 3 * 3 = 9 ̶ 3 car ̶ 3 * ̶ 3 = 9 

14 Reprise du cours ( ) Les formules pour matérialiser l’incertitude et l’imprécision : Exemple si = 1.253; p = 0,187 et k = 1,96 remarques : le « ± » se place devant le résultat et pas devant le « k », comme fait par erreur à différents endroits justification de « ± » devant la valeur de la marge : (p*q)/n est positif la racine carrée d’un nombre positif peut être : positive négative  exemple : la racine carrée de 9 vaut à la fois : 3 car 3 * 3 = 9 ̶ 3 car ̶ 3 * ̶ 3 = 9 

15 Reprise du cours ( ) Les formules pour matérialiser l’incertitude et l’imprécision : fourchette : p ± marge Exemple si = 1.253; p = 0,187 et k = 1,96 fourchette : borne inférieur : 0,187 – 0,022 = 0,165 borne supérieure : 0, ,022 = 0,209 fourchette : [16,5% ; 20,9%]

16 Reprise du cours ( ) Les formules pour matérialiser l’incertitude et l’imprécision : fourchette : p ± marge Exemple si = 1.253; p = 0,187 et k = 1,96 fourchette : borne inférieur : 0,187 – 0,022 = 0,165 borne supérieure : 0, ,022 = 0,209 fourchette : [16,5% ; 20,9%]

17 Reprise du cours ( ) Les formules pour matérialiser l’incertitude et l’imprécision : fourchette : p ± marge Exemple si = 1.253; p = 0,187 et k = 1,96 fourchette : borne inférieure : 0,187 – 0,022 = 0,165 borne supérieure : 0, ,022 = 0,209 fourchette : [16,5% ; 20,9%]

18 Reprise du cours ( ) Influence de « n » sur la marge et la fourchette Tableau récapitulatif Conclusions : plus « n » est grand, plus la marge est faible, ceteris paribus plus la taille de l’échantillon est grande, plus la marge est faible explication : « n » sert de diviseur dans la formule plus un diviseur est grand, plus le résultat est petit, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,3 1.000 95% ± 2,84% [27,16% ; 32,84%] B 10.000 ± 0,90% [29,10% ; 30,90%] C ± 0,28% [29,72% ; 30,28%]

19 Interprétation des données d’enquête
Influence du degré de certitude sur la marge et la fourchette Tableau récapitulatif Conclusions : plus le degré de certi. est grand, plus la marge est forte, ceteris paribus explication : plus le degré de certitude est grand, plus « k » est grand « k » set de multiplicateur plus un multiplicateur est grand, plus le résultat est grand, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,3 1.000 95% ± 2,84% [27,16% ; 32,84%] B 99% ± 3,74% [26,26% ; 33,74%]

20 Interprétation des données d’enquête
Influence du degré de certitude sur la marge et la fourchette Tableau récapitulatif Conclusions : plus le degré de certi. est grand, plus la marge est forte, ceteris paribus explication : plus le degré de certitude est grand, plus « k » est grand « k » set de multiplicateur plus un multiplicateur est grand, plus le résultat est grand, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,3 1.000 95% ± 2,84% [27,16% ; 32,84%] B 99% ± 3,74% [26,26% ; 33,74%]

21 Interprétation des données d’enquête
Influence du degré de certitude sur la marge et la fourchette Tableau récapitulatif Conclusions : plus le degré de certi. est grand, plus la marge est forte, ceteris paribus explication : plus le degré de certitude est grand, plus « k » est grand « k » set de multiplicateur plus un multiplicateur est grand, plus le résultat est grand, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,3 1.000 95% ± 2,84% [27,16% ; 32,84%] B 99% ± 3,74% [26,26% ; 33,74%]

22 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : si 2 « p » sont complémentaires, les marges sont identiques explication : si p = 0,1  q = 1-0,1 = 0,9 et p*q = 0,1*0,9 si p = 0,9  q = 1-0,9 = 0,1 et p*q = 0,9*0,1 0,1*0,9 = 0,9*0,1 = 0,09 toujours ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,1 1.000 95% ± 1,86% [8,14% ; 11,86%] B 0,9 [88,14% ; 91,86%]

23 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : si 2 « p » sont complémentaires, les marges sont identiques explication : si p = 0,1  q = 1-0,1 = 0,9 et p*q = 0,1*0,9 si p = 0,9  q = 1-0,9 = 0,1 et p*q = 0,9*0,1 0,1*0,9 = 0,9*0,1 = 0,09 toujours ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,1 1.000 95% ± 1,86% [8,14% ; 11,86%] B 0,9 [88,14% ; 91,86%]

24 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : si 2 « p » sont complémentaires, les marges sont identiques explication : si p = 0,1  q = 1-0,1 = 0,9 et p*q = 0,1*0,9 si p = 0,9  q = 1-0,9 = 0,1 et p*q = 0,9*0,1 0,1*0,9 = 0,9*0,1 = 0,09 toujours ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,1 1.000 95% ± 1,86% [8,14% ; 11,86%] B 0,9 [88,14% ; 91,86%]

25 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : si 2 « p » sont complémentaires, les marges sont identiques explication : si p = 0,1  q = 1-0,1 = 0,9 et p*q = 0,1*0,9 si p = 0,9  q = 1-0,9 = 0,1 et p*q = 0,9*0,1 0,1*0,9 = 0,9*0,1 = 0,09 toujours ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,1 1.000 95% ± 1,86% [8,14% ; 11,86%] B 0,9 [88,14% ; 91,86%]

26 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : si 2 « p » sont complémentaires, les marges sont identiques explication : si p = 0,1  q = 1-0,1 = 0,9 et p*q = 0,1*0,9 si p = 0,9  q = 1-0,9 = 0,1 et p*q = 0,9*0,1 0,1*0,9 = 0,9*0,1 = 0,09 toujours ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,1 1.000 95% ± 1,86% [8,14% ; 11,86%] B 0,9 [88,14% ; 91,86%]

27 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : si 2 « p » sont complémentaires, les marges sont identiques explication : si p = 0,1  q = 1-0,1 = 0,9 et p*q = 0,1*0,9 si p = 0,9  q = 1-0,9 = 0,1 et p*q = 0,9*0,1 0,1*0,9 = 0,9*0,1 = 0,09 ceteris paribus, si 2 p complémentaires, marges identiques Cas Données Résultats p n ° certitude Marge Fourchette A 0,1 1.000 95% ± 1,86% [8,14% ; 11,86%] B 0,9 [88,14% ; 91,86%]

28 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : plus « p » s’écarte de 0,5, plus la marge est forte, ceteris paribus explication : le produit p*q est maximal pour p = 0,5 plus p*q est grand, plus le résultat est grand, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,9 1.000 95% ± 1,86% [88,14% ; 91,86%] B 0,5 ± 3,10% [46,90% ; 53,10%] C 0,3 ± 2,84% [27,16% ; 32,84%] D 0,1 [8,14% ; 11,86%]

29 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : plus « p » s’écarte de 0,5, plus la marge est faible, ceteris paribus explication : le produit p*q est maximal pour p = 0,5 plus p*q est grand, plus le résultat est grand, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,9 1.000 95% ± 1,86% [88,14% ; 91,86%] B 0,5 ± 3,10% [46,90% ; 53,10%] C 0,3 ± 2,84% [27,16% ; 32,84%] D 0,1 [8,14% ; 11,86%]

30 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : plus « p » s’écarte de 0,5, plus la marge est faible, ceteris paribus explication : le produit p*q est maximal pour p = 0,5 (pas évident) plus p*q est grand, plus le résultat est grand, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,9 1.000 95% ± 1,86% [88,14% ; 91,86%] B 0,5 ± 3,10% [46,90% ; 53,10%] C 0,3 ± 2,84% [27,16% ; 32,84%] D 0,1 [8,14% ; 11,86%]

31 Interprétation des données d’enquête
Influence de « p » sur la marge et la fourchette Tableau récapitulatif Conclusions : plus « p » s’écarte de 0,5, plus la marge est faible, ceteris paribus explication : le produit p*q est maximal pour p = 0,5 (pas évident) plus p*q est grand, plus la marge est grande, ceteris paribus Cas Données Résultats p n ° certitude Marge Fourchette A 0,9 1.000 95% ± 1,86% [88,14% ; 91,86%] B 0,5 ± 3,10% [46,90% ; 53,10%] C 0,3 ± 2,84% [27,16% ; 32,84%] D 0,1 [8,14% ; 11,86%]

32 Interprétation des données d’enquête
Exercice 5.2 : fini (cf. aussi p. 71 du syllabus et correction sur le site) A faire à votre rythme, mais en suivant cet ordre : Exercice 5.7 dans A, attention particulière à 5, 6 et 7 (au moins un des 3) dans B, attention particulière à 12, 13, 14, 15 et 16) Exercice 5.4 (on va le faire ensemble) Les autres si temps À priori seront corrigés au cours : 5.7.A et 5.4

33 Interprétation des données d’enquête
Exercice 5.7.A points 1 à 4 (p, marges et fourchettes) Valeur de « p » pour X : (316/1.571)*100 = (partie pour X / le total à se répartir) * 100 point 5 : marge + grande Y que Z : est-ce logique ? Pourquoi ? valeur de p : X → 20,11% (0,2011) & Y = 17,95% (0,1795) 0,1795 est plus éloigné de 0,5 que 0,2011 donc la marge pour Y sera plus petite que celle pour X vu la règle : « ceteris paribus, plus p s’éloigne de 0,5 plus la marge est faible » points 6 et 7 : même type de raisonnement (cf. site) Parti Dans l'échantillon Degré de certitude Marge Fourchette Voix p B. inf. B. sup. X 316 20,11% 95 % 1,98% 18,13% 22,10% Y 282 17,95% 1,90% 16,05% 19,85% Z 973 61,94% 2,40% 59,53% 64,34% Tot. 1.571 100,00% Correction rapide !

34 Interprétation des données d’enquête
Exercice 5.7.A points 1 à 4 (p, marges et fourchettes) Valeur de « p » pour X : (316/1.571)*100 = (partie pour X / le total à se répartir) * 100 point 5 : marge + grande Y que Z : est-ce logique ? Pourquoi ? valeur de p : X → 20,11% (0,2011) & Y = 17,95% (0,1795) 0,1795 est plus éloigné de 0,5 que 0,2011 donc la marge pour Y sera plus petite que celle pour X vu la règle : « ceteris paribus, plus p s’éloigne de 0,5 plus la marge est faible » points 6 et 7 : même type de raisonnement (cf. site) Parti Dans l'échantillon Degré de certitude Marge Fourchette Voix p B. inf. B. sup. X 316 20,11% 95 % 1,98% 18,13% 22,10% Y 282 17,95% 1,90% 16,05% 19,85% Z 973 61,94% 2,40% 59,53% 64,34% Tot. 1.571 100,00%

35 Interprétation des données d’enquête
Exercice 5.7.A points 1 à 4 (p, marges et fourchettes) valeur de « p » pour X : (316/1.571)*100 = (partie pour X / le total à se répartir) * 100 point 5 : marge + grande Y que Z : est-ce logique ? Pourquoi ? valeur de p : X → 20,11% (0,2011) & Y = 17,95% (0,1795) 0,1795 est plus éloigné de 0,5 que 0,2011 donc la marge pour Y sera plus petite que celle pour X vu la règle : « ceteris paribus, plus p s’éloigne de 0,5 plus la marge est faible » points 6 et 7 : même type de raisonnement (cf. site) Parti Dans l'échantillon Degré de certitude Marge Fourchette Voix p B. inf. B. sup. X 316 20,11% 95 % ±1,98% 18,13% 22,10% Y 282 17,95% ±1,90% 16,05% 19,85% Z 973 61,94% ±2,40% 59,53% 64,34% Tot. 1.571 100,00%

36 Interprétation des données d’enquête
Exercice 5.7.A points 1 à 4 (p, marges et fourchettes) valeur de « p » pour X : (316/1.571)*100 = (partie pour X / le total à se répartir) * 100 point 5 : marge + grande X que Y : est-ce logique ? Pourquoi ? valeur de p : X → 20,11% (0,2011) & Y = 17,95% (0,1795) 0,1795 est plus éloigné de 0,5 que 0,2011 donc la marge pour Y sera plus petite que celle pour X vu la règle : « ceteris paribus, plus p s’éloigne de 0,5 plus la marge est faible » points 6 et 7 : même type de raisonnement (cf. site) Parti Dans l'échantillon Degré de certitude Marge Fourchette Voix p B. inf. B. sup. X 316 20,11% 95 % ±1,98% 18,13% 22,10% Y 282 17,95% ±1,90% 16,05% 19,85% Z 973 61,94% ±2,40% 59,53% 64,34% Tot. 1.571 100,00%

37 Interprétation des données d’enquête
Exercice 5.7.A points 1 à 4 (p, marges et fourchettes) valeur de « p » pour X : (316/1.571)*100 = (partie pour X / le total à se répartir) * 100 point 5 : marge + grande X que Y : est-ce logique ? Pourquoi ? valeur de p : X = 20,11% (0,2011) & Y = 17,95% (0,1795) 0,1795 est plus éloigné de 0,5 que 0,2011 donc la marge pour Y sera plus petite que celle pour X vu la règle : « ceteris paribus, plus p s’éloigne de 0,5 plus la marge est faible » points 6 et 7 : même type de raisonnement (cf. site) Parti Dans l'échantillon Degré de certitude Marge Fourchette Voix p B. inf. B. sup. X 316 20,11% 95 % ±1,98% 18,13% 22,10% Y 282 17,95% ±1,90% 16,05% 19,85% Z 973 61,94% ±2,40% 59,53% 64,34% Tot. 1.571 100,00%

38 Interprétation des données d’enquête
Exercice 5.7.A points 1 à 4 (p, marges et fourchettes) valeur de « p » pour X : (316/1.571)*100 = (partie pour X / le total à se répartir) * 100 point 5 : marge + grande X que Y : est-ce logique ? Pourquoi ? valeur de p : X = 20,11% (0,2011) & Y = 17,95% (0,1795) 0,1795 est plus éloigné de 0,5 que 0,2011 donc la marge pour Y sera plus petite que celle pour X vu la règle : « ceteris paribus, plus p s’éloigne de 0,5 plus la marge est faible » points 6 et 7 : même type de raisonnement (cf. site) Parti Dans l'échantillon Degré de certitude Marge Fourchette Voix p B. inf. B. sup. X 316 20,11% 95 % ±1,98% 18,13% 22,10% Y 282 17,95% ±1,90% 16,05% 19,85% Z 973 61,94% ±2,40% 59,53% 64,34% Tot. 1.571 100,00%

39 Interprétation des données d’enquête
Exercice 5.7.A points 1 à 4 (p, marges et fourchettes) valeur de « p » pour X : (316/1.571)*100 = (partie pour X / le total à se répartir) * 100 point 5 : marge + grande X que Y : est-ce logique ? Pourquoi ? valeur de p : X = 20,11% (0,2011) & Y = 17,95% (0,1795) 0,1795 est plus éloigné de 0,5 que 0,2011 donc la marge pour Y sera plus petite que celle pour X vu la règle : « ceteris paribus, plus p s’éloigne de 0,5 plus la marge est faible » points 6 et 7 : même type de raisonnement (cf. site) Parti Dans l'échantillon Degré de certitude Marge Fourchette Voix p B. inf. B. sup. X 316 20,11% 95 % ±1,98% 18,13% 22,10% Y 282 17,95% ±1,90% 16,05% 19,85% Z 973 61,94% ±2,40% 59,53% 64,34% Tot. 1.571 100,00%

40 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

41 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

42 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

43 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

44 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

45 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

46 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

47 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

48 Interprétation des données d’enquête
Exercice 5.7.B (n = ; ° certitude = 95% ; B = 55% et P = 45%) Point 8 : marge pour B = ± 0,022 ou ± 2,2% Point 9 : marge pour P = ± 0,022 ou ± 2,2% Point 10 : résultats logiques pour 8 et 9 ? Oui, car 2 « p » complémentaires. Point 11 : fourchettes pour B : [52,8% ; 57,2%] & P : [42,8% ; 47,2%] Point 12 : pas d’accord : si résultat hors fourchette, on est dans les 5 « mauvaises » chances sur 100 Point 13 : pas d’accord : si l’imprécision est bien présente (la fourchette), pas de trace de l’incertitude Point 14 : d’accord car la fourchette marque bien l’imprécision Point 15 : pas d’accord car pas de trace de l’incertitude Point 16 : d’accord : à 95 chances sur 100 dans la fourchette, à 5 chances sur 100, hors fourchette

49 Interprétation des données d’enquête
Exercice 5.4 : après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

50 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

51 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

52 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

53 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

54 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

55 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

56 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

57 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

58 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : une sondage ne peut jamais se trompé

59 Interprétation des données d’enquête
Après la théorie, que diriez-vous ? Données Peut-on dire que le sondage s’est trompé, si après dépouillement… … A obtient 48% et B, 52% ? Non, résultats dans la fourchette … A obtient 40% et B, 60% ? Non, résultats hors fourchette, mais on est dans les 5 malchances sur 100 … A obtient 51% et B, 49% ? Non, la victoire change de camp, mais résultats dans fourchette … A obtient 60% et B, 40% ? Candidat Borne infé. « p » Borne supé. A 46,4% 49,5% 52,6% B 47,4% 50,5% 53,6% Conclusion : un sondage ne peut jamais se tromper

60 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte ; tout est à l’indicatif ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

61 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte : tout est à l’indicatif et pas de ° de certitude ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

62 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte : tout est à l’indicatif et pas de ° de certitude ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

63 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte : tout est à l’indicatif et pas de ° de certitude ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

64 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte : tout est à l’indicatif et pas de ° de certitude ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

65 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte : tout est à l’indicatif et pas de ° de certitude ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

66 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte : tout est à l’indicatif et pas de ° de certitude ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

67 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte : tout est à l’indicatif et pas de ° de certitude ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

68 Interprétation des données d’enquête
Exercice 5.5 Incertitude : pas prise en compte : tout est à l’indicatif et pas de ° de certitude ! Imprécision : prise en compte via la marge et la fourchette Marge de 0,92% avec un ° de certitude de 95% = À propos du titre « Il y a aujourd’hui francophones en Flandre » Pour être acceptable, il aurait fallu interroger tous les habitants de Flandre Titre plus correct : « selon le sondage, à 95% de chances d’avoir raison, il devrait y avoir entre et francophones en Flandre » + éventuellement le complément : « à 5% de chances… » Titre plus correct difficilement vendable !

69 Interprétation des données d’enquête
Un sondage peut-il se tromper ? (Encadré p. 72) Par rapport à l’échantillon des ? Par rapport à la population des millions d’électeurs ? En ne retenant que la valeur centrale ? erreur si la valeur centrale ne se réalise pas c’est oublier l’imprécision et l’incertitude ! inacceptable En prenant en compte UNIQUEMENT la fourchette ? erreur si la valeur vraie n’est pas dans la fourchette c’est oublier l’incertitude ! En prenant AUSSI en compte l’incertitude ? si en dehors de la fourchette, invoquer la clause d’incertitude : c’est la faute à « pas de chance » en choisissant l’échantillon Un sondage ne se trompe jamais !

70 Interprétation des données d’enquête
Un sondage peut-il se tromper ? (Encadré p. 72) Par rapport à l’échantillon des ? Par rapport à la population des millions d’électeurs ? En ne retenant que la valeur centrale ? erreur si la valeur centrale ne se réalise pas c’est oublier l’imprécision et l’incertitude ! inacceptable En prenant en compte UNIQUEMENT la fourchette ? erreur si la valeur vraie n’est pas dans la fourchette c’est oublier l’incertitude ! En prenant AUSSI en compte l’incertitude ? si en dehors de la fourchette, invoquer la clause d’incertitude : c’est la faute à « pas de chance » en choisissant l’échantillon Un sondage ne se trompe jamais !

71 Interprétation des données d’enquête
Un sondage peut-il se tromper ? (Encadré p. 72) Par rapport à l’échantillon des ? Par rapport à la population des millions d’électeurs ? En ne retenant que la valeur centrale ? erreur si la valeur centrale ne se réalise pas c’est oublier l’imprécision et l’incertitude ! inacceptable En prenant en compte UNIQUEMENT la fourchette ? erreur si la valeur vraie n’est pas dans la fourchette c’est oublier l’incertitude ! En prenant AUSSI en compte l’incertitude ? si en dehors de la fourchette, invoquer la clause d’incertitude : c’est la faute à « pas de chance » en choisissant l’échantillon Un sondage ne se trompe jamais !

72 Interprétation des données d’enquête
Un sondage peut-il se tromper ? (Encadré p. 72) Par rapport à l’échantillon des ? Par rapport à la population des millions d’électeurs ? En ne retenant que la valeur centrale ? erreur si la valeur centrale ne se réalise pas c’est oublier l’imprécision et l’incertitude ! inacceptable En prenant en compte UNIQUEMENT la fourchette ? erreur si la valeur vraie n’est pas dans la fourchette c’est oublier l’incertitude ! En prenant AUSSI en compte l’incertitude ? si en dehors de la fourchette, invoquer la clause d’incertitude : c’est la faute à « pas de chance » en choisissant l’échantillon Un sondage ne se trompe jamais !

73 Interprétation des données d’enquête
Un sondage peut-il se tromper ? (Encadré p. 72) Par rapport à l’échantillon des ? Par rapport à la population des millions d’électeurs ? En ne retenant que la valeur centrale ? erreur si la valeur centrale ne se réalise pas c’est oublier l’imprécision et l’incertitude ! inacceptable En prenant en compte UNIQUEMENT la fourchette ? erreur si la valeur vraie n’est pas dans la fourchette c’est oublier l’incertitude ! En prenant AUSSI en compte l’incertitude ? si en dehors de la fourchette, invoquer la clause d’incertitude : c’est la faute à « pas de chance » en choisissant l’échantillon Un sondage ne se trompe jamais !

74 Interprétation des données d’enquête
Un sondage peut-il se tromper ? (Encadré p. 72) Par rapport à l’échantillon des ? Par rapport à la population des millions d’électeurs ? En ne retenant que la valeur centrale ? erreur si la valeur centrale ne se réalise pas c’est oublier l’imprécision et l’incertitude ! inacceptable En prenant en compte UNIQUEMENT la fourchette ? erreur si la valeur vraie n’est pas dans la fourchette c’est oublier l’incertitude ! En prenant AUSSI en compte l’incertitude ? si en dehors de la fourchette, invoquer la clause d’incertitude : c’est la faute à « pas de chance » en choisissant l’échantillon Un sondage ne se trompe jamais !

75 Interprétation des données d’enquête
Un sondage peut-il se tromper ? (Encadré p. 72) Par rapport à l’échantillon des ? Par rapport à la population des millions d’électeurs ? En ne retenant que la valeur centrale ? erreur si la valeur centrale ne se réalise pas c’est oublier l’imprécision et l’incertitude ! inacceptable En prenant en compte UNIQUEMENT la fourchette ? erreur si la valeur vraie n’est pas dans la fourchette c’est oublier l’incertitude ! En prenant AUSSI en compte l’incertitude ? si en dehors de la fourchette, invoquer la clause d’incertitude : c’est la faute à « pas de chance » en choisissant l’échantillon Un sondage ne se trompe jamais !

76 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? prendre une fourchette plus grande Mais l’information devient moins intéressante car l’imprécision grandit exemple : si « p » = 49,5 et « n » = 1.000 si 95 %, fourchette = [46,4% ; 52,6%] si 99 %, fourchette = [45,4% ; 53,6%] données plus difficiles à vendre car imprécision plus grande pour parler avec certitude (100 chances sur 100 d’avoir raison) : annoncer pour chaque candidat un résultat entre 0 et 100 % ce qui est une information : certaine : aucun doute que cela se vérifiera MAIS évidente : besoin de rien, ni de personne pour l’annoncer

77 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») MAIS plus cher (argent) ! à la limite : interroger toute la population (tous les électeurs) résultat précis (sans fourchette) mais contradictoire avec la notion d’enquête…

78 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») AUGMENTER L’INCERTITUDE parler à 90 % et pas à 95 % cas A exercice 1, à 95 % : marge = 2,84% et fourchette = [27,16% ; 32,84%] à 50 % : marge = 1,00% et fourchette = [29,00% ; 31,00%] mais qui va acheter une information avec 1 chance sur 2 ?

79 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») AUGMENTER L’INCERTITUDE parler à 90 % et pas à 95 % cas A exercice 1, à 95 % : marge = 2,84% et fourchette = [27,16% ; 32,84%] à 50 % : marge = 1,00% et fourchette = [29,00% ; 31,00%] mais qui va acheter une information avec 1 chance sur 2 ?

80 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») AUGMENTER L’INCERTITUDE parler avec un degré de certitude de 50 % (et pas à 95 %) cas A exercice 1, à 95 % : marge = 2,84% et fourchette = [27,16% ; 32,84%] à 50 % : marge = 1,00% et fourchette = [29,00% ; 31,00%] mais qui va acheter une information avec 1 chance sur 2 ?

81 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») AUGMENTER L’INCERTITUDE parler avec un degré de certitude de 50 % (et pas à 95 %) cas A exercice 1, à 95 % : marge = 2,84% et fourchette = [27,16% ; 32,84%] à 50 % : marge = 1,00% et fourchette = [29,00% ; 31,00%] mais qui va acheter une information avec 1 chance sur 2 ?

82 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») AUGMENTER L’INCERTITUDE parler avec un degré de certitude de 50 % (et pas à 95 %) cas A exercice 1, à 95 % : marge = ± 2,84% et fourchette = [27,16% ; 32,84%] à 50 % : marge = 1,00% et fourchette = [29,00% ; 31,00%] fourchette plus petite mais qui va acheter une information avec 1 chance sur 2 ?

83 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») AUGMENTER L’INCERTITUDE parler avec un degré de certitude de 50 % (et pas à 95 %) cas A exercice 1, à 95 % : marge = ± 2,84% et fourchette = [27,16% ; 32,84%] à 50 % : marge = ± 1,00% et fourchette = [29,00% ; 31,00%] fourchette plus petite mais qui va acheter une information avec 1 chance sur 2 ?

84 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») AUGMENTER L’INCERTITUDE parler avec un degré de certitude de 50 % (et pas à 95 %) cas A exercice 1, à 95 % : marge = ± 2,84% et fourchette = [27,16% ; 32,84%] à 50 % : marge = ± 1,00% et fourchette = [29,00% ; 31,00%] marge et fourchette presque 3 fois plus petites mais qui va acheter une information avec 1 chance sur 2 ?

85 Interprétation des données d’enquête
Que faire pour… … augmenter la certitude ? … diminuer l’imprécision ? augmenter la taille de l’échantillon (« n ») AUGMENTER L’INCERTITUDE parler avec un degré de certitude de 50 % (et pas à 95 %) cas A exercice 1, à 95 % : marge = ± 2,84% et fourchette = [27,16% ; 32,84%] à 50 % : marge = ± 1,00% et fourchette = [29,00% ; 31,00%] marge et fourchette presque 3 fois plus petites mais qui va acheter une information avec 1 chance sur 2 d’avoir raison ?

86 Interprétation des données d’enquête
Interprétation des données : non-exhaustivité <> exhaustivité Hypothèse : pas d’erreur d’observation (déclarations sincères, bon enregistrement des réponses…) d’une valeur unique, on passe à une fourchette de certaine, la donnée devient incertaine Collecte Valeur tirée de l’observation Degré de certitude Exhaustive unique certaine Non exhaustive : enquête fourchette (= imprécision) incertaine (= incertitude) En passant de l’exhaustif au non-exhaustif, on perd beaucoup dans l’interprétation des données !

87 Interprétation des données d’enquête
Interprétation des données : non-exhaustivité <> exhaustivité Hypothèse : pas d’erreur d’observation (déclarations sincères, bon enregistrement des réponses…) d’une valeur unique, on passe à une fourchette de certaine, la donnée devient incertaine Collecte Valeur tirée de l’observation Degré de certitude Exhaustive unique certaine Non exhaustive : enquête fourchette (= imprécision) incertaine (= incertitude) En passant de l’exhaustif au non-exhaustif, on perd beaucoup dans l’interprétation des données !

88 Interprétation des données d’enquête
Interprétation des données : non-exhaustivité <> exhaustivité Hypothèse : pas d’erreur d’observation (déclarations sincères, bon enregistrement des réponses…) d’une valeur unique, on passe à une fourchette de certaine, la donnée devient incertaine Collecte Valeur tirée de l’observation Degré de certitude Exhaustive unique certaine Non exhaustive : enquête fourchette (= imprécision) incertaine (= incertitude) En passant de l’exhaustif au non-exhaustif, on perd beaucoup dans l’interprétation des données !

89 Interprétation des données d’enquête
Utilité des sondages, des enquêtes ? Critère : utile si surplus de connaissance Exemple 1 : pays où vont se dérouler les 1res élections Exemple 2 : sondages préélectoraux en Belgique

90 Interprétation des données d’enquête
Critère : utile si surplus de connaissance Exemple 1 : pays où vont se dérouler les 1res élections Exemple 2 : sondages préélectoraux en Belgique (situation ancienne) Avec les mêmes données : Exemple 1 : commentaires intéressants Exemple 2 : à la limite ne rien faire, car information évidente ! Partis Sondage B. inf Valeur centrale B. Sup. PS 25,8% 29,2% 32,6% PRL-FDF 21,9% 25,2% 28,5% PSC 17,0% 20,0% 23,0% Partis Score aux Sondage en 1994 élections ‘89 B. inf. Valeur centrale B. sup. PS 38,1% 25,8% 29,2% 32,6% PRL-FDF 22,7% 21,9% 25,2% 28,5% PSC 21,3% 17,0 20,0% 23,0%

91 Interprétation des données d’enquête
Et si on ajoute les résultats de 1994 Conclusion : tous les scores dans les fourchettes ! Conclusion : 2 scores hors fourchette, mais SURPRISES énormes ! Wallonie Score aux Sondage en 1994 élections ‘89 B. inf. Valeur centrale B. sup. élections ‘94 PS 38,1% 25,8% 29,2% 32,6% 30,5% PRL-FDF 22,7% 21,9% 25,2% 28,5% 24,3% PSC 21,3% 17,0% 20,0% 23,0% 18,8% Flandre Score aux Sondage en 1994 élections ‘89 B. inf. Valeur centrale B. sup. élections ‘94 CVP 34,1% 20,3% 23,5% 26,7% 27,5% VLD 17,1% 23,9% 27,3% 30,7% 18,4% SP 20,0% 13,6% 16,4% 19,2% 17,5%

92 Interprétation des données d’enquête
Pour finir Choisir parmi les exercices Remarque : p. 7 (reprise du tout 1er exercice, avant la théorie)

93 À utiliser si temps

94 Interprétation des données d’enquête
Interprétation d’un sondage sur électeurs à la sortie des bureaux de vote ( contrôle de l’exhaustif possible à postériori) Hypothèses : pas d’erreur d’observation, d’échantillonnage, de vote blanc ou nul Résultats des élections (après dépouillement de tous les bulletins) opération exhaustive (tous les bulletins du pays) possibilité de contrôler le sondage, ce qui est exceptionnel Tableau 1. Interprétation habituelle dans l’échantillon, 49,5% ont choisi A dans la population (tous les électeurs du pays), 51,5% ont voté A Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A

95 Interprétation des données d’enquête
Interprétation d’un sondage sur électeurs à la sortie des bureaux de vote ( contrôle de l’exhaustif possible à postériori) Hypothèses : pas d’erreur d’observation, d’échantillonnage, de vote blanc ou nul Résultats des élections (après dépouillement de tous les bulletins) opération exhaustive (tous les bulletins du pays) possibilité de contrôler le sondage, ce qui est exceptionnel Tableau 1. Interprétation habituelle dans l’échantillon, 49,5% ont choisi A dans la population (tous les électeurs du pays), 51,5% ont voté A Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A

96 Interprétation des données d’enquête
Interprétation d’un sondage sur électeurs à la sortie des bureaux de vote ( contrôle de l’exhaustif possible à postériori) Hypothèses : pas d’erreur d’observation, d’échantillonnage, de vote blanc ou nul Résultats des élections (après dépouillement de tous les bulletins) opération exhaustive (tous les bulletins du pays) possibilité de contrôler le sondage, ce qui est exceptionnel Tableau 1. Interprétation habituelle dans l’échantillon, 49,5% ont choisi A dans la population (tous les électeurs du pays), 51,5% ont voté A Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A

97 Interprétation des données d’enquête
Tableau 1. Interprétation habituelle Le sondage « prévoit » la victoire de B, mais c’est A qui a gagné Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? Tableau 2. Tableau complet avec marge et fourchette : Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,2% 46,3% 52,7% B 48,5% 50,5 % 47,3% 53,7% Victoire Impossible à déterminer !

98 Interprétation des données d’enquête
Tableau 1. Interprétation habituelle Le sondage « prévoit » la victoire de B, mais c’est A qui a gagné Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? Tableau 2. Tableau complet avec marge et fourchette : Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,2% 46,3% 52,7% B 48,5% 50,5 % 47,3% 53,7% Victoire Impossible à déterminer !

99 Interprétation des données d’enquête
Tableau 1. Interprétation habituelle Le sondage « prévoit » la victoire de B, mais c’est A qui a gagné Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? Tableau 2. Tableau complet avec marge et fourchette : Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,2% 46,3% 52,7% B 48,5% 50,5 % 47,3% 53,7% Victoire Impossible à déterminer !

100 Interprétation des données d’enquête
Tableau 1. Interprétation habituelle Le sondage « prévoit » la victoire de B, mais c’est A qui a gagné Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? Tableau 2. Tableau complet avec marge et fourchette : Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,2% 46,3% 52,7% B 48,5% 50,5 % 47,3% 53,7% Victoire Impossible à déterminer !

101 Interprétation des données d’enquête
Tableau 1. Interprétation habituelle Le sondage « prévoit » la victoire de B, mais c’est A qui a gagné Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? Tableau 2. Tableau complet avec marge et fourchette : Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,2% 46,3% 52,7% B 48,5% 50,5 % 47,3% 53,7% Victoire Impossible à déterminer !

102 Interprétation des données d’enquête
Tableau 1. Interprétation habituelle Le sondage « prévoit » la victoire de B, mais c’est A qui a gagné Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? Tableau 2. Tableau complet avec marge et fourchette : Enquête Élections Candidat A 49,5 % 51,5% Candidat B 50,5 % 48,5% Victoire B A Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

103 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,3 et 52,7%, soit victoire ou défaite pour B, à 95 %, entre 47,3 et 53,7 %, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

104 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,3 et 52,7%, soit victoire ou défaite pour B, à 95 %, entre 47,3 et 53,7 %, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

105 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,3 et 52,7%, soit victoire ou défaite pour B, à 95 %, entre 47,3 et 53,7 %, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

106 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,4 et 52,6%, soit victoire ou défaite pour B, à 95 %, entre 47,3 et 53,7 %, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

107 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,4 et 52,6%, soit victoire ou défaite pour B, à 95 %, entre 47,4 et 53,6%, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

108 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,4 et 52,6%, soit victoire ou défaite pour B, à 95 %, entre 47,4 et 53,6%, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

109 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,4 et 52,6%, soit victoire ou défaite pour B, à 95 %, entre 47,4 et 53,6%, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

110 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,4 et 52,6%, soit victoire ou défaite pour B, à 95 %, entre 47,4 et 53,6%, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

111 Interprétation des données d’enquête
Tableau 2. Tableau complet avec marge et fourchette Titre des journaux : « les perdants des élections = les sondages » Qu’en penser ? D’accord, si on se limite aux valeurs centrales, ce qui est à proscrire… Interprétation correcte et complète : pour A, à 95 %, entre 46,4 et 52,6%, soit victoire ou défaite pour B, à 95 %, entre 47,4 et 53,6%, soit victoire ou défaite conclusions : pour A et B, le résultat effectif est dans la fourchette ce sondage ne permet pas de prédire la victoire de l’un ou l’autre perdants des élections = ceux qui n’interprètent pas correctement les sondages Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 49,5 %  3,1% 46,4% 52,6% B 48,5% 50,5 % 47,4% 53,6% Victoire Impossible à déterminer !

112 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon  le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper

113 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon  le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper

114 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon  le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper

115 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon  le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper

116 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon  le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper

117 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon  le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper

118 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper

119 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper

120 Interprétation des données d’enquête
Tableau 3. Un autre sondage Le sondage s’est-il trompé ? Argument pour : résultats en dehors de la fourchette C’est oublier l’incertitude : 95 % d’avoir raison et 5 % de se tromper Si on accuse le responsable du sondage, il pourra se défendre avec l’INCERTITUDE : tout a été bien fait, selon les règles de l’art MAIS pas de chance en choisissant les de l’échantillon le hasard a mal fait les choses nous sommes dans les 5 mauvaises chances sur 100 ! Élections Enquête (sur 1.000, à la sortie des bureaux) Résultats Valeur À 95 chances sur 100 d’avoir raison dépouillement centrale Marge Borne infér. Borne supér. A 51,5% 40 %  3,0% 37,0% 43,0% B 48,5% 60 % 57,0% 64,0% Victoire La victoire de B, en apparence Bref, un sondage bien fait ne peut jamais se tromper


Télécharger ppt "Pour aller directement à la reprise du cours"

Présentations similaires


Annonces Google