La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

3 ème rencontre inter ORU 8 octobre 2013 Les difficultés de collecte et d’analyse des données ORU Dr B Maire*, J-L Fuchs**, A Di Fabio***, B Bonfils**

Présentations similaires


Présentation au sujet: "3 ème rencontre inter ORU 8 octobre 2013 Les difficultés de collecte et d’analyse des données ORU Dr B Maire*, J-L Fuchs**, A Di Fabio***, B Bonfils**"— Transcription de la présentation:

1 3 ème rencontre inter ORU 8 octobre 2013 Les difficultés de collecte et d’analyse des données ORU Dr B Maire*, J-L Fuchs**, A Di Fabio***, B Bonfils** ORULOR * Réseau Lorraine Urgences, **ARS Lorraine, ***GCS Télésanté Lorraine

2 Les difficultés d’analyse des données ORU Périmètre de la réflexion Tout d’abord, il faut noter que les données collectées et analysées sont variables en fonction des ORU avec un socle minimum actuel représenté par le RPU Tout d’abord, il faut noter que les données collectées et analysées sont variables en fonction des ORU avec un socle minimum actuel représenté par le RPU Exemple d’autres données: TOP, GEMSA, données SAMU- SMUR et UHTCD… Exemple d’autres données: TOP, GEMSA, données SAMU- SMUR et UHTCD… Intérêt probable de définir un socle commun élargi de données inter ORU Intérêt probable de définir un socle commun élargi de données inter ORU Compte tenu des éléments sus cités, la réflexion portera essentiellement sur les champs « actuels » du RPU Compte tenu des éléments sus cités, la réflexion portera essentiellement sur les champs « actuels » du RPU Les difficultés portent autant sur les données que sur les bornes et les axes d’analyse Les difficultés portent autant sur les données que sur les bornes et les axes d’analyse A propos des données, il faut distinguer 4 notions différentes à savoir la conformité, l’exhaustivité, la qualité et la cohérence A propos des données, il faut distinguer 4 notions différentes à savoir la conformité, l’exhaustivité, la qualité et la cohérence

3 Les difficultés liées aux données Conformité d’un RPU et règles de gestion Nécessité de définir la conformité d’un RPU, les règles d’acceptation d’un RPU Nécessité de définir la conformité d’un RPU, les règles d’acceptation d’un RPU En d’autres termes, quels sont les RPU à rejeter? Quel est le contenu minimal attendu? En d’autres termes, quels sont les RPU à rejeter? Quel est le contenu minimal attendu? En premier lieu, il s’agit du contenant à savoir de la conformité structurelle du RPU (format XML avec balises ad hoc) En premier lieu, il s’agit du contenant à savoir de la conformité structurelle du RPU (format XML avec balises ad hoc) En second lieu, il s’agit du contenu. Par exemple, faut- il rejeter un RPU en cas de codes CIM 10 non conformes, (en sachant que les thésaurus sont, à ce jour, non homogènes) en cas de champs vides (heure de sortie par exemple), de durées de passage négatives ou supérieures à 72h ou encore d’incohérences entre champs ? En second lieu, il s’agit du contenu. Par exemple, faut- il rejeter un RPU en cas de codes CIM 10 non conformes, (en sachant que les thésaurus sont, à ce jour, non homogènes) en cas de champs vides (heure de sortie par exemple), de durées de passage négatives ou supérieures à 72h ou encore d’incohérences entre champs ? Dans l’hypothèse du rejet d’un RPU, quel est son devenir ? Stockage et information du producteur ou règles d’auto complétude (utilisation de l’heure médiane pour compléter l’absence d’une heure de sortie…) ou plus simplement d’auto correction (correction d’un diagnostic CIM…). Concernant ces éventuelles règles de correction, elles doivent idéalement être activées en amont de la réception c’est-à-dire lors de la saisie initiale Dans l’hypothèse du rejet d’un RPU, quel est son devenir ? Stockage et information du producteur ou règles d’auto complétude (utilisation de l’heure médiane pour compléter l’absence d’une heure de sortie…) ou plus simplement d’auto correction (correction d’un diagnostic CIM…). Concernant ces éventuelles règles de correction, elles doivent idéalement être activées en amont de la réception c’est-à-dire lors de la saisie initiale Toujours dans l’hypothèse d’un rejet de RPU, les RPU en erreur « historisés » doivent-ils entrer en compte dans l'analyse des données et si oui, dans quelles conditions ? Toujours dans l’hypothèse d’un rejet de RPU, les RPU en erreur « historisés » doivent-ils entrer en compte dans l'analyse des données et si oui, dans quelles conditions ? Enfin, se pose également la définition des critères d’unicité d’un RPU, le couple RPU / FINESS géographique ne semblant pas toujours suffisant (exemple classique du défaut d’ « étanchéité SU-UHTCD » Enfin, se pose également la définition des critères d’unicité d’un RPU, le couple RPU / FINESS géographique ne semblant pas toujours suffisant (exemple classique du défaut d’ « étanchéité SU-UHTCD »

4 Les difficultés liées aux données Exhaustivité des données L’exhaustivité concerne à la fois les données mais aussi les passages devant générer des RPU L’exhaustivité concerne à la fois les données mais aussi les passages devant générer des RPU Par exemple, certains passages pédiatriques médicaux ne sont actuellement pas pris en compte (problème des admissions bi sites sur un même établissement) Par exemple, certains passages pédiatriques médicaux ne sont actuellement pas pris en compte (problème des admissions bi sites sur un même établissement) Autre question, que faire des passages pour urgences gynéco - obstétricales ? (si intégration, probablement à définir) Autre question, que faire des passages pour urgences gynéco - obstétricales ? (si intégration, probablement à définir) En ce qui concerne l’exhaustivité des données, nécessité de déterminer des champs bloquants communs mais également de définir les seuils autorisant l’analyse En ce qui concerne l’exhaustivité des données, nécessité de déterminer des champs bloquants communs mais également de définir les seuils autorisant l’analyse De plus un champ peut être complété mais d’une façon non exhaustive (diagnostics associés, actes CCAM…) De plus un champ peut être complété mais d’une façon non exhaustive (diagnostics associés, actes CCAM…) Par ailleurs, intérêt de l’analyse mais aussi du suivi des courbes d’exhaustivité. En effet, une analyse régionale permet de discuter la pertinence de certains champs du RPU et le suivi par établissement participe à la motivation des établissements Par ailleurs, intérêt de l’analyse mais aussi du suivi des courbes d’exhaustivité. En effet, une analyse régionale permet de discuter la pertinence de certains champs du RPU et le suivi par établissement participe à la motivation des établissements

5 Les difficultés liées aux données Exhaustivité des données exemple d’un radar d’exhaustivité Orulor

6 Les difficultés liées aux données Qualité des données Les défauts de qualité peuvent relever de problèmes techniques ou de problèmes de codage Les défauts de qualité peuvent relever de problèmes techniques ou de problèmes de codage Exemples d’origine technique: Exemples d’origine technique: - zone de saisie en texte libre, - zone de saisie en texte libre, - absence de « détrompage » ou de règle sur la saisie des codes communes (code pays étrangers…) - absence de « détrompage » ou de règle sur la saisie des codes communes (code pays étrangers…) - durée de passage avec clôture de dossier retardée ou absence d’étanchéité SU-UHTCD (quelles sont les bornes utilisées par le progiciel?) - durée de passage avec clôture de dossier retardée ou absence d’étanchéité SU-UHTCD (quelles sont les bornes utilisées par le progiciel?) - absence de transcodage (traitement et codification CCAM, orientation et caractérisation en MCO, SSR…) ou transcodage non pertinent - absence de transcodage (traitement et codification CCAM, orientation et caractérisation en MCO, SSR…) ou transcodage non pertinent - absence de champs bloquants - absence de champs bloquants Exemples de problèmes de codage: Exemples de problèmes de codage: - CCMU (cotation de la consultation d’urgence en consultation spécialisée transformant une CCMU1 en 2, séparation 3/4/5 subjective) - CCMU (cotation de la consultation d’urgence en consultation spécialisée transformant une CCMU1 en 2, séparation 3/4/5 subjective) - codage du diagnostic principal trop imprécis (asthénie-AEG, malaise- syncope-lipothymie, autres recours….). Possibilité d’intégrer une fonction de diagnostic lié - codage du diagnostic principal trop imprécis (asthénie-AEG, malaise- syncope-lipothymie, autres recours….). Possibilité d’intégrer une fonction de diagnostic lié - absence de cotation ou cotation partielle des diagnostics associés, des actes CCAM - absence de cotation ou cotation partielle des diagnostics associés, des actes CCAM

7 Les difficultés liées aux données Cohérences des données Nécessité de définir des règles de cohérence entre les différents champs Nécessité de définir des règles de cohérence entre les différents champs Exemples Exemples - Provenance - mode d’entée - Provenance - mode d’entée - CCMU et orientation (CCMU 5 et RAD) - CCMU et orientation (CCMU 5 et RAD) - Sexe et /ou âge et diagnostic - Sexe et /ou âge et diagnostic - Mode de sortie et mode d’orientation (retour à domicile et hospitalisation en UHTCD sur les progiciels non étanches) - Mode de sortie et mode d’orientation (retour à domicile et hospitalisation en UHTCD sur les progiciels non étanches) Ce contrôle de cohérence devrait idéalement s’effectuer lors de la saisie initiale sur le progiciel dédié car le post traitement est difficile et aléatoire Ce contrôle de cohérence devrait idéalement s’effectuer lors de la saisie initiale sur le progiciel dédié car le post traitement est difficile et aléatoire Attention également aux faux « non renseigné » en particulier pour les calculs d’exhaustivité Attention également aux faux « non renseigné » en particulier pour les calculs d’exhaustivité

8 Les difficultés liées aux bornes et aux définitions Nécessité d’utiliser les mêmes bornes et les mêmes définitions: Nécessité d’utiliser les mêmes bornes et les mêmes définitions: - Pour les âges et les classes d’âge - Pour les âges et les classes d’âge - Pour les jours (0h01 à 23h59 ou 08h-08h..), les semaines, les WE, les périodes PDSES et PDSA - Pour les jours (0h01 à 23h59 ou 08h-08h..), les semaines, les WE, les périodes PDSES et PDSA Comment traiter les groupes 4? Comment traiter les groupes 4? Définition du TOP, du taux de recours aux urgences Définition du TOP, du taux de recours aux urgences Modalités de prise en compte des « sorties atypiques » (fugue, contre avis médical, parti sans attendre) et des réorientations Modalités de prise en compte des « sorties atypiques » (fugue, contre avis médical, parti sans attendre) et des réorientations Prise en compte ou non du parcours de soins intra SU du patient (temps d’attente de prise en charge, temps de prise en charge médicale (avec localisation), temps d’attente de sortie) Prise en compte ou non du parcours de soins intra SU du patient (temps d’attente de prise en charge, temps de prise en charge médicale (avec localisation), temps d’attente de sortie)

9 Difficultés liées aux axes d’analyse Il s’agit essentiellement de difficultés d’interprétation Il s’agit essentiellement de difficultés d’interprétation Exemple de la durée moyenne de passage (DMP): comment comparer la DMS (ou la médiane) de deux SU. La comparaison brute n’a pas de sens de même que les objectifs non pondérés de type : 80% des passages de moins de 4h. Exemple de la durée moyenne de passage (DMP): comment comparer la DMS (ou la médiane) de deux SU. La comparaison brute n’a pas de sens de même que les objectifs non pondérés de type : 80% des passages de moins de 4h. Cette DMP est impactée par de multiples paramètres souvent totalement indépendants de la « pertinence » du SU Cette DMP est impactée par de multiples paramètres souvent totalement indépendants de la « pertinence » du SU - un SU ne recevant qu’une patientèle adulte ou pire qu’une patientèle adulte médicale ne pourra jamais atteindre l’objectif de 80% des passages de moins de 4h (en Lorraine, la DMP d’un enfant est de 2h versus 5 h pour un patient de plus de 75ans) - un SU ne recevant qu’une patientèle adulte ou pire qu’une patientèle adulte médicale ne pourra jamais atteindre l’objectif de 80% des passages de moins de 4h (en Lorraine, la DMP d’un enfant est de 2h versus 5 h pour un patient de plus de 75ans) - autre facteur à fort impact, les % des différentes CCMU ( la réalisation d’un examen complémentaire majore de 1h la DMP) - autre facteur à fort impact, les % des différentes CCMU ( la réalisation d’un examen complémentaire majore de 1h la DMP) - enfin, quid des groupes 4 ? - enfin, quid des groupes 4 ? Pour ce paramètre a priori simple, une comparaison d’activité suppose l’utilisation de « coefficients de pondération » Pour ce paramètre a priori simple, une comparaison d’activité suppose l’utilisation de « coefficients de pondération »

10 Difficultés liées aux axes d’analyse Après la DMP, autre exemple, à savoir l’analyse de l’activité par diagnostic Après la DMP, autre exemple, à savoir l’analyse de l’activité par diagnostic Tout d’abord, il s’agit de diagnostics de présomption souvent soit exagérément précis ou plus habituellement trop vagues (malaise - syncope- lipothymie, AEG …) Tout d’abord, il s’agit de diagnostics de présomption souvent soit exagérément précis ou plus habituellement trop vagues (malaise - syncope- lipothymie, AEG …) Par ailleurs, dans un même champ, peut figurer un diagnostic, un motif de recours ou une circonstance Par ailleurs, dans un même champ, peut figurer un diagnostic, un motif de recours ou une circonstance Enfin, il existe une grande dispersion des diagnostics rendant l’analyse difficile Enfin, il existe une grande dispersion des diagnostics rendant l’analyse difficile Intérêt d’une CIM 10 « très » réduite (nouvelle version SFMU) mais aussi d’une règle unique de regroupement des diagnostics (forcément partiale compte tenu de la faible exhaustivité des diagnostics associés et de l’absence habituelle de fonction de diagnostic lié) Intérêt d’une CIM 10 « très » réduite (nouvelle version SFMU) mais aussi d’une règle unique de regroupement des diagnostics (forcément partiale compte tenu de la faible exhaustivité des diagnostics associés et de l’absence habituelle de fonction de diagnostic lié)

11 Difficultés liées aux axes d’analyse Dernier exemple, celui de l’interprétation des sorties dites « atypiques » regroupant les fugues, les sorties contre avis médical et les « partis sans attendre » Dernier exemple, celui de l’interprétation des sorties dites « atypiques » regroupant les fugues, les sorties contre avis médical et les « partis sans attendre » Il est tentant de considérer ce paramètre comme un indicateur de qualité mais: Il est tentant de considérer ce paramètre comme un indicateur de qualité mais: - certains progiciels n’intègrent pas les PSA - certains progiciels n’intègrent pas les PSA - il peut parfois s’agir d’un biais permettant de clôturer un dossier non exhaustif (champ de saisie détourné de son usage attendu) - il peut parfois s’agir d’un biais permettant de clôturer un dossier non exhaustif (champ de saisie détourné de son usage attendu) C’est ainsi qu’un % important de patients partis sans attendre peut simplement être lié à une anomalie de saisie, reflétant un défaut de rigueur de saisie en non pas un défaut de prise en charge de patients C’est ainsi qu’un % important de patients partis sans attendre peut simplement être lié à une anomalie de saisie, reflétant un défaut de rigueur de saisie en non pas un défaut de prise en charge de patients

12 Conclusion Propositions d’action Améliorer la production, la qualité et l’exhaustivité des données Améliorer la production, la qualité et l’exhaustivité des données Harmoniser les modalités de collecte Harmoniser les modalités de collecte Définir les règles d’acceptation d’un RPU Définir les règles d’acceptation d’un RPU Déterminer un socle minimum commun de données Déterminer un socle minimum commun de données Préciser les définitions des termes usités Préciser les définitions des termes usités Retenir des bornes communes Retenir des bornes communes Définir un socle minimum commun d’axe d’analyse Définir un socle minimum commun d’axe d’analyse Ces axes doivent permettre la description de l’activité, la comparaison inter SU mais aussi interrégionale, la définition d’une activité normale et anormale (en terme de volumétrie avec son corollaire HET mais aussi en terme de services attendus) Ces axes doivent permettre la description de l’activité, la comparaison inter SU mais aussi interrégionale, la définition d’une activité normale et anormale (en terme de volumétrie avec son corollaire HET mais aussi en terme de services attendus) Préciser les règles d’interprétation mais surtout les biais potentiels Préciser les règles d’interprétation mais surtout les biais potentiels Proposer des évolutions ( champs du RPU, RPU SMUR, regroupement de pathologies, RPU et HET…) Proposer des évolutions ( champs du RPU, RPU SMUR, regroupement de pathologies, RPU et HET…) Au total, intérêt de mettre en place une « charte qualité inter ORU » Au total, intérêt de mettre en place une « charte qualité inter ORU »

13 Les difficultés de collecte et d’analyse des données ORU Dr B Maire*, J-L Fuchs**, A Di Fabio***, B Bonfils** ORULOR Réseau Lorraine Urgences*, **ARS Lorraine, ***GCS Télésanté Lorraine Merci pour votre attention


Télécharger ppt "3 ème rencontre inter ORU 8 octobre 2013 Les difficultés de collecte et d’analyse des données ORU Dr B Maire*, J-L Fuchs**, A Di Fabio***, B Bonfils**"

Présentations similaires


Annonces Google