Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parMichel Barbeau Modifié depuis plus de 6 années
1
La cotation fonctionnelle Chapitre A : Tolérances dimensionnelles
2
A.1) cote tolérancée aMax = a + es amin = a + ei Représentation plane,
avec les tolérances « skin model » aMax = a + es amin = a + ei
3
A.1) cote tolérancée dim dim dim dim dim dim « skins models possibles, satisfaisant la cote tolérancée a » Condition de conformité (tolérance dimensionnelle) : Aucune forme géométrique imposée !!!
4
A.2) Chaîne de cotes Pourquoi?
Un mécanisme est constitué de nombreuses pièces. Pour qu’il puisse fonctionner, certaines conditions fonctionnelles doivent être assurées (jeu, serrage, dépassement, retrait, etc. …) Il faut définir précisément ces conditions
5
Condition fonctionnelle
A.2) Chaîne de cotes Condition fonctionnelle Cote condition
6
A.2) Chaîne de cotes Le cote condition associée à une condition fonctionnelle est susceptible d’être modifiée en fonction des dimensions de certaines pièces.
7
A.2) Chaîne de cotes
8
A.2) Chaîne de cotes La cotation fonctionnelle permet de trouver les différentes cotes à respecter pour assurer le bon fonctionnement du mécanisme : elle permet la détermination des spécifications fonctionnelles du système.
9
A.2) Chaîne de cotes Application: clavetage
: Assurer le contact entre 2 et 4 : Réserve de taraudage : Assurer le montage
10
A.2) Chaîne de cotes Cote fonctionnelle
Une cote fonctionnelle est une cote tolerancée appartenant à une pièce et ayant une influence sur la cote condition. Application: clavetage
11
A.2) Chaîne de cotes Chaînes de cote
L’ensemble des cotes fonctionnelles qui réalisent une condition fonctionnelle forme la chaîne de cote. C’est une somme de vecteurs consécutifs dont le maillon de fermeture est le vecteur (cote-)condition. Établir une chaîne de cotes associée à une condition fonctionnelle consiste à déterminer toutes les cotes des pièces influant la cote condition.
12
A.2) Chaîne de cotes Remarques très importantes dans l’établissement d’une chaîne de cote : On notera chaque cote, où i représente le numéro de la pièce correspondante (et e la cote-condition) Il n’y a qu’une seule cote par pièce dans une chaîne de cote Excepté la cote condition, une cote ne doit appartenir qu’à une seule pièce
13
A.2) Chaîne de cotes Exemple :
14
A.2) Chaîne de cotes Exemple : T5
15
A.2) Chaîne de cotes Exemple : T5 T1
16
A.2) Chaîne de cotes Exemple : T5 T1 L5/4
17
A.2) Chaîne de cotes Exemple : b5 T5 T1 L5/4
18
A.2) Chaîne de cotes Exemple : b5 T5 T1 L5/4 L4/2
19
A.2) Chaîne de cotes Exemple : b5 T5 T1 b4 L5/4 L4/2
20
A.2) Chaîne de cotes Exemple : b5 T5 T1 b4 L5/4 L4/2 L2/1
21
A.2) Chaîne de cotes Exemple : b5 T5 T1 b4 b2 L5/4 L4/2 L2/1
22
A.2) Chaîne de cotes Exemple : b5 b1 T5 T1 b4 b2 L5/4 L4/2 L2/1
23
A.2) Chaîne de cotes Exemple : b5 b4 b2 b1 Au final :
24
A.2) Chaîne de cotes Cotes fonctionnelles reportées sur le dessin de définition de chaque pièce intervenant dans la chaîne de cotes (une cote fonctionnelle appartient à une pièce) : b1 5 4 b2 b4 b5
25
A.2.3) Chaîne de cotes : Equations de projection
Equation vectorielle Tout vecteur cote condition s’exprimera par la relation vectorielle : Dans l’exemple : Equation scalaire (cas unidirectionel) : b5 b4 b2 b1 Dans l’exemple :
26
A.2.3) Chaîne de cotes : Equations de projection
Valeurs extrêmes : b5 b4 b2 b1 Intervalle de tolérance: Dans l’exemple : Ou encore :
27
A.3) Ajustements Pourquoi?
Les ajustements sont normalisés avec des symboles afin de réduire l’expression des tolérancements dimensionnels et d’être compréhensible rapidement Exemple : H8 f 7 Positionnement de l’alésage (H, sans écart) IT Alésage (0,039) Diamètre nominal (40) IT arbre (0,025) Positionnement de l’arbre (f, avec écart de 0,025)
28
A.3) Ajustements Exemples : H8f7 ; H7g6 ; H8h H7m H7p6 ; H7s6
29
La cotation fonctionnelle Chapitre B : Tolérances géométriques
30
B) Tolérances géométriques
31
B) Tolérances géométriques
Elément tolérancé Spécification géométrique Ici : surface réputée plane Ici : localisation (par rapport à A et B, avec une tolérance de 0,1mm)
32
B) Tolérances géométriques
Elément tolérancé Attention aux éléments médians (si la flèche indiquant l’élément tolérancé est dans la continuité de la cote)
33
B) Tolérances géométriques
Elément tolérancé Spécification géométrique Ici : surface réputée plane Ici : localisation (par rapport à A et B, avec une tolérance de 0,1mm) Tolérance (de la zone de tolérance) Zone de tolérance Dimensions de référence (positionnement de la zone de tolérance par rapport aux références spécifiées) Référence(s) Ici : Aspecifié : axe du cylindre tangent ext. à A, minimisant les écarts. Bspécifié : plan tangent ext. à B et perp. à Aspec, minimisant les écarts.
34
B) Tolérances géométriques
Elément tolérancé B) Tolérances géométriques Aspécifié Zone de tolérance Bspécifié Condition de conformité : L’élément tolérancé doit être compris dans la zone de tolérance Ici : la surface réputée plane tolérancée doit être comprise entre deux plans distants de 0,1mm, dont le plan médian coupe Aspécifié à 65mm de Bspécifié.
35
B.8) Exigence de l’enveloppe
Sans tolérance géométrique, un ajustement pourrait donner ça : Afin d’être sûr de pouvoir monter (ou serrer) correctement un arbre dans un alésage, on utilisera toujours l’exigence de l’enveloppe (ou l’exigence du maximum de matière) avec un ajustement
36
B.8) Exigence de l’enveloppe
Pour un arbre :
37
B.8) Exigence de l’enveloppe
Pour un alésage :
38
B.9) Exigence du maximum de matière
But : lorsqu’on souhaite un montage possible (avec jeu), tout en respectant un contact entre deux autres surfaces. État virtuel : enveloppe des états au maximum de matière en géométrie parfaite, avec la prise en compte de toutes les tolérances géométriques. A 0,3 M Etat virtuel non dépassé di Tolérance dimensionnelle (min et max) respectée en chaque point Plan associé à A
39
Chapitre C : Etats de surface
40
C) États de surface
41
C) États de surface Rugosité Ra: moyenne arithmétique des écarts
42
C) États de surface Mesure avec un rugosimètre :
43
C) États de surface Mesure avec un rugosimètre :
44
C) États de surface Inscriptions normalisées (à savoir lire) :
45
C) États de surface
46
FIN
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.