La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

La magnétostatique I) Le vecteur densité de courant 1) Définition.

Présentations similaires


Présentation au sujet: "La magnétostatique I) Le vecteur densité de courant 1) Définition."— Transcription de la présentation:

1 La magnétostatique I) Le vecteur densité de courant 1) Définition

2 Définition On appelle courant électrique tout mouvement d’ensemble ordonné de particules chargées dans un référentiel (R)

3 d = v.dS.dt 2Q = q.n*.d = q.n*.v.dS.dt dS v dr = v.dt

4 La magnétostatique I) Le vecteur densité de courant 1) Définition
2) Lien avec l’intensité

5 Définition L’intensité électrique est définie comme le débit de charge à travers une surface S. Elle s’exprime en A.

6 dS M P d +

7 dS + I

8 La magnétostatique I) Le vecteur densité de courant
II) Symétries et invariances du champ magnétique

9 La magnétostatique I) Le vecteur densité de courant
II) Symétries et invariances du champ magnétique 1) Invariances

10 Par le principe de Curie :
Le champ magnétostatique B possède les mêmes propriétés d'invariance que la distribution de courant qui le crée

11 La magnétostatique I) Le vecteur densité de courant
II) Symétries et invariances 1) Invariances 2) Symétries

12   Plan de symétrie  Symétrie d’un vecteur axial p2 p’2 p1 p’1
a1 = p1  p2 a2 = p’1  p’2 Plan de symétrie 

13 P’ = Sym(P) et j(P’) = Sym[j(P)]
Plan de symétrie Un système (S) possède un plan de symétrie (), quand P et P’ deux points du système vérifient : P’ = Sym(P) et j(P’) = Sym[j(P)] j(P) est le vecteur densité de courant au niveau de P.

14 Plan de symétrie j(P’) = j(P) I(P’) = I(P)

15 Propriété () est un plan d’antisymétrie pour B et si M est un point de l'espace et M' = Sym(M), alors : B(M') = – Sym[B(M)]

16 Propriété

17 Conséquence En un point M appartenant à (), plan de symétrie d'une distribution de courant, le champ magnétostatique B(M), vecteur axial, est perpendiculaire à ce plan ().

18 Conséquence

19 P’ = Sym(P) et j(P’) = – Sym[j(P)]
Plan d’antisymétrie Un système (S) possède un plan d'antisymétrie (*), quand P et P' deux points du système vérifient : P’ = Sym(P) et j(P’) = – Sym[j(P)] j(P) est le vecteur densité de courant au niveau de P.

20 Plan d’antisymétrie j(P’) = – j(P) I(P’) = – I(P)

21 Conséquence (*) est un plan de symétrie pour B et si M est un point de l'espace et M' = Sym*(M), alors : B(M') = Sym*[B(M)]

22 Propriété

23 Conséquence En un point M appartenant à (*), plan d’antisymétrie d'une distribution de courant, le champ magnétostatique B(M), vecteur axial, appartient à ce plan (*).

24 Conséquence

25 * : Plan d’antisymétrie
Récapitulatif  : Plan de symétrie * : Plan d’antisymétrie M’ = Sym(M) M’ = Sym*(M) E(M’) = + Sym[E(M)] E(M’) = – Sym*[E(M)] B(M’) = – Sym[B(M)] B(M’) = + Sym*[B(M)]

26 La magnétostatique I) Le vecteur densité de courant
II) Symétries et invariances III) Le théorème d’Ampère 1) Théorème d’Ampère

27 dS M P d +

28 Théorème d’Ampère La circulation du champ magnétostatique B le long d'un contour fermé orienté  est égale à la somme des intensités des courants enlacés par  multiplié par 0 :

29 Tous les courants électriques créent le champ B mais seules les intensités enlacées interviennent dans la circulation de B.

30 Lignes de champ magnétique créées par deux fils rectilignes infinis

31 Lignes de champ magnétique créées par deux fils rectilignes infinis

32 La magnétostatique I) Le vecteur densité de courant
II) Symétries et invariances III) Le théorème d’Ampère 1) Théorème d’Ampère 2) Le flux du champ magnétotatique

33 Flux du champ magnétique
1 = 2 2 1 dS2 dS1

34 La magnétostatique I) Le vecteur densité de courant
II) Symétries et invariances III) Le théorème d’Ampère 1) Théorème d’Ampère 2) Le flux du champ magnétotatique 3) Exemples de champs magnétostatiques a) Le cylindre « infini »

35 z O R r

36 Champ créé par un cylindre infini
B r R

37 La magnétostatique I) Le vecteur densité de courant
II) Symétries et invariances III) Le théorème d’Ampère 3) Exemples de champs magnétostatiques a) Le cylindre « infini » b) Le solénoïde

38 uz i a h B  S  i uz 

39 Lignes de champ magnétique crée par un solénoïde


Télécharger ppt "La magnétostatique I) Le vecteur densité de courant 1) Définition."

Présentations similaires


Annonces Google