La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Protocoles à Divulgation Nulle

Présentations similaires


Présentation au sujet: "Protocoles à Divulgation Nulle"— Transcription de la présentation:

1 Protocoles à Divulgation Nulle

2 Première approche La caverne d’Ali Baba Prouveur / vérifieur
Questions / réponses Convainc le vérifieur que le prouveur est bien en possession d’un secret L’interaction n’apprend rien du secret du prouveur au vérifieur

3 Systèmes de preuves interactives
Interactive Turing Machine P: tout puissant V: polynomial

4 Systèmes de preuves interactives
Interactive Turing Machine P: tout puissant V: polynomial Complétude: V accepte souvent si P connaît le secret xL, Pr(P,V(x)=1)  2/3 Validité: V accepte rarement si P est un imposteur xL, Pr(B,V(x)=1)  1/3 IP ={langages ayant des systèmes de preuves interactives} BPP NP  IP

5 Graphes non isomorphes
Complétude: G1 et G2 non isomorphes  V accepte toujours Validité: G1 et G2 isomorphes  V accepte avec une probabilité  ½

6 Preuve à divulgation nulle
Simulateur (M*): Ne connaît pas le secret du prouveur Exécution en temps polynomial Peut échouer () Zero-knowledge parfait : Les échecs du simulateur sont limités (Pr(M*(x)= )  ½) P,V*(x) et m*(x) sont identiquement distribuées Zero-knowledge calculatoire: {P,V*(x)}xL et {M*(x)}xL sont calculatoirement indistingables Complexité: BPP  PZK  CZK  IP NP  CZK ?

7 Graphes trois-colorables
Complétude: G trois-colorable  V accepte toujours Validité: G non trois-colorable  V accepte avec une probabilité  1/|E|

8 Graphes trois-colorables

9 Feige-Fiat-Shamir Protocole à clef publique
(p,q,s) secrets (n=p.q, v=s2) publiques Complétude: P connaît s  V accepte toujours Validité: P ne connaît pas s  V accepte avec une probabilité  1/2

10 Feige-Fiat-Shamir

11 Avantages pratiques Famille de protocoles Taille message Nb itérations
Calculs Mémoire Zero-knowledge Large Plusieurs Lourd Grosse Clef publique Une Très lourd Symétrique Petit Léger Petite

12 Attaques possibles Force brute Post-mortem Replay
Principe: se libérer de la limite polynomiale de V* Parade: limiter le temps de réponse Post-mortem Parade: changer le secret régulièrement, tous les protocoles sont sensibles à cette attaque et plus particulièrement les protocoles zero-knowledge Replay Principe: rejouer une instance d’identification Parade: zero-knowledge non sensible à cette attaque Man-in-the-middle / Connivence Principe: jouer les intermédiaire entre 2 machines et tromper les 2

13 Conclusion


Télécharger ppt "Protocoles à Divulgation Nulle"

Présentations similaires


Annonces Google