La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

ECHANGES THERMIQUES Une approche pragmatique, appliquée, pour le métier de l’ingénieur. De nombreux exemples ( T D).

Présentations similaires


Présentation au sujet: "ECHANGES THERMIQUES Une approche pragmatique, appliquée, pour le métier de l’ingénieur. De nombreux exemples ( T D)."— Transcription de la présentation:

1 ECHANGES THERMIQUES Une approche pragmatique, appliquée, pour le métier de l’ingénieur. De nombreux exemples ( T D).

2 BIBLIOGRAPHIE ELEMENTS DES ECHANGES THERMIQUES L WEIL Gauthier_Villard
HEAT TRANSFER J P HOLMAN McGraw-Hill LA TRANSMISSION DE LA CHALEUR A B De VRIENDT Gaêtan Morin Vol 1 Tome1 La conduction Vol 1 Tome2 Introduction au Rayonnement Vol 2 La conduction suite et appendices TRANSFERTS THERMIQUES Mécanique des fluides anisothermes J TAINE , J P PETIT Dunod Université TRANSFERT DE CHALEUR J CRABOL Masson Tome1 Les principes Tome 2 Applications industrielles Tome 3 Corrigés de problèmes

3 Les trois grands modes d’échanges de chaleur I-Introduction
La Conduction à travers la matière T2 T1 Q

4 Les trois grands modes d’échanges de chaleur I-Introduction
La Conduction à travers la matière Le Rayonnement Vide Air

5 Les trois grands modes d’échanges de chaleur I-Introduction
La Conduction à travers la matière Le Rayonnement La Convection par déplacement de matière

6 II-La Conduction k est la conductivité thermique
a-Cas à une dimension : ex le mur Les isothermes sont des plans perpendiculaires à ox La puissance transmise q est proportionnelle : à la Surface d’échange A au gradient de température o x A  q  k est la conductivité thermique

7 II-La Conduction a-Cas à une dimension : ex le mur [k]=W/Km
Les isothermes sont des plans perpendiculaires à ox La puissance transmise q est proportionnelle : à la Surface d’échange A au gradient de température o x A   q [q]=W=J/s [A]=m2 [dT/dx]=K/m [k]=W/Km

8 II-La Conduction a - Cas à une dimension : ex le mur
b - Cas général : milieu isotrope et homogène k est la conductivité thermique

9 II-La Conduction a - Cas à une dimension : ex le mur
b - Cas général : milieu isotrope c - Equation de bilan d’énergie qx qx +dqx o x La quantité de chaleur emmagasinée pendant un temps dt est donc qx dt-(qx +dqx)dt

10 II-La Conduction a - Cas à une dimension : ex le mur
b - Cas général : milieu isotrope c - Equation de bilan d’énergie qy+dqy qx qx +dqx La quantité de chaleur emmagasinée pendant un temps dt est donc o x y z qy (qx+qy+qz ) dt-( qx+dqx + qy+dqy + qz+dqz) dt

11 II-La Conduction c - Equation de bilan d’énergie qx qx +dqx o x y z qy
a - Cas à une dimension : ex le mur b - Cas général : milieu isotrope c - Equation de bilan d’énergie qx qx +dqx o x y z qy qy+dqy densité volumique de source de chaleur La quantité de chaleur emmagasinée pendant un temps dt est donc

12 II-La Conduction c - Equation de bilan d’énergie qy+dqy z qx qx +dqx o
a - Cas à une dimension : ex le mur b - Cas général : milieu isotrope c - Equation de bilan d’énergie qy+dqy z qx qx +dqx o x qy y Densité volumique de source de chaleur Chaleur spécifique massique La quantité de chaleur emmagasinée pendant un temps dt est donc

13 II-La Conduction c - Equation de bilan d’énergie
a - Cas à une dimension : ex le mur b - Cas général : milieu isotrope c - Equation de bilan d’énergie Comme qx , qy ,qz sont apportées par conduction Le bilan de chaleur pendant un temps dt est donc

14 III-Le Rayonnement Le nombre de photons et leur énergie dépendent : h
- de la température - de l’état de surface h T

15 III-Le Rayonnement corps noir: puissance émise dans un demi espace par une surface A à une température T Loi de Stephan [q]=W=J/s [A]=m2 []=W/K4m2 [T]=K Constante de Stephan -4m-2

16 III-Le Rayonnement corps gris : rayonne de manière isotrope
 représente l’émissivité de la surface 

17 IV-La Convection Tp T∞ Processus d’échange avec déplacement de matière

18 IV-La Convection q=hA(Tp-T∞)
La puisance transmise q est proportionnelle : - à la surface d’échange A - à l’écart de température entre la paroi et le fluide q=hA(Tp-T∞) [q]=W=J/s [A]=m2 [h]=W/Km2 [T]=K

19 Les trois grands modes d’échanges de chaleur V-Conclusion

20 Les trois grands modes d’échanges de chaleur V-Conclusion
Tp1 qh Tp2

21 Les trois grands modes d’échanges de chaleur V-Conclusion
Tp1 qh qk Tp2

22 Les trois grands modes d’échanges de chaleur V-Conclusion
Tp1 qh’ qh qk Tp2 En régime permanent: qh= qk= qh’ hA(Tp2-T2)= -kA(Tp2-Tp1)/ hA(T1-Tp1)

23 Les trois grands modes d’échanges de chaleur V-Conclusion
Tp1 Tp2 qh qk qh’


Télécharger ppt "ECHANGES THERMIQUES Une approche pragmatique, appliquée, pour le métier de l’ingénieur. De nombreux exemples ( T D)."

Présentations similaires


Annonces Google